Open Access
Issue
Mechanics & Industry
Volume 20, Number 6, 2019
Article Number 609
Number of page(s) 9
DOI https://doi.org/10.1051/meca/2019042
Published online 25 September 2019
  1. N.F. Gusarova, Optical monitoring of yarn during its processing, Opt. Zh. 68, 613 (2001) [J. Opt. Technol. 68, 613 (2007)] [Google Scholar]
  2. A.E. Cherkassky, B.J. Kit, A computer simulation of yarn breakages in the ring spinning process. Part I: Model structure, Investigation strategy, and Experimental design, J. Text. Inst. 88, 47 (1997) [CrossRef] [Google Scholar]
  3. Q. Wang, W. Ge, C. Lu, G. Zhang, H. Shen, B. Jiang, W. Sun, Yarn speed and length measurement using optical method in real time, Opt. Eng. 57, 104103 (2018) [Google Scholar]
  4. H. Su, X. Zhang, On the mechanical analysis and control for the tension system of the cylindrical filament winding, J. Text. Sci. Technol. 2, 7–15 (2016) [CrossRef] [Google Scholar]
  5. J. Huang, M.Y. Gao et al., The application of PID controller with dead zone for yarn's constant tension control system, 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), Australia , 19–21 June 2013, IEEEE [Google Scholar]
  6. Q. Wang, R. Huang, C. Lu, W. Pan, Yarn break detection using an optical method in real time, J. Opt. Technol. 84, 342–346 (2017) [CrossRef] [Google Scholar]
  7. C.X. Wang, Y.Z. Wang, R.Q. Yang, H. Lu, Research on precision tension control system based on neural network, IEEE Trans. Ind. Electr. 51, 381–386 (2003) [CrossRef] [Google Scholar]
  8. N. Sejri, O. Harzallah, S.B. Amar, Influence du pré-mouillage sur les propriétés mécaniques d'un, fil encollé, Mech. Ind. 11, 385–392 (2010) [Google Scholar]
  9. V.P. Shankam, W. Oxenham, A.M. Seyam, E. Grant, G. Hodge, Wireless yarn tension measurement, and control in direct cabling process, J. Text. Inst. 100, 400–411 (2009) [CrossRef] [Google Scholar]
  10. M. Naebe, B.A. McGregor, D. Tester, Effect of yarn winding tension on the Wool ComfortMeter value when testing yarns. Text. Res. J. 85, 1198–1206 (2015) [CrossRef] [Google Scholar]
  11. M.P. Millman, M. Acar, M.R. Jackson, Computer vision for textured yarn interlace (nip) measurements at high speeds, Mechatronics 11, 1025–1038 (2001) [CrossRef] [Google Scholar]
  12. P. Zhong, Z. Kang, S. Han, R. Hu, J.Y. Pang, X.Y. Zhang, F.X. Huang, Evaluation method for yarn diameter unevenness based on image sequence processing, Text. Res. J. 85, 369–379 (2015) [CrossRef] [Google Scholar]
  13. K.C. Lin, Observer-Based tension feedback control with friction and inertia compensation, IEEE Trans. Cont. Sys. Technol. 11, 109–118 (2003) [CrossRef] [Google Scholar]
  14. D. Knittel, E. Laroche, Tension control for winding systems with two-degrees-of-freedom H controllers, IEEE Trans. Ind. Appl. 39, 113–120 (2003) [CrossRef] [Google Scholar]
  15. P. Vivek, Novel Method for Dynamic Yarn Tension Measurement and Control in Direct Cabling Process, PhD thesis, North Carolina State University, Raleigh, USA, 2005 [Google Scholar]
  16. V. Gassmann, D. Knittel, P.R. Pagilla, M.A. Bueno, Fixed-order H tension control in the unwinding section of a web handling system using a pendulum dancer, IEEE Trans. Cont. Syst. Technol. 20, 173–180 (2012) [Google Scholar]
  17. M. Shamsuzzoha, Closed-loop PI/PID controller tuning for stable and integrating process with time delay, Ind. Eng. Chem. Res. 52, 12973–12992 (2013) [CrossRef] [Google Scholar]
  18. R.J. Mozhdehi, A.S. Ghafari, Optimal PID control of a nano-Newton CMOS-MEMS capacitive force sensor for biomedical applications, Mech. Ind. 15, 139–145 (2014) [CrossRef] [Google Scholar]
  19. C. Anil, R.P. Sree, Tuning of PID controllers for integrating systems using direct synthesis method, ISA Trans. 57, 211–219 (2015) [Google Scholar]
  20. S. Skogestad, Simple analytic rules for model reduction and PID controller tuning, J. Process Control 13, 291–309 (2003) [Google Scholar]
  21. M. Shamsuzzoha, S. Skogestad, The set point overshoot method: A simple and fast closed-loop approach for PID Tuning, J. Process Control 20, 1220–1234 (2010) [Google Scholar]
  22. R.J. Mozhdehi, A.S. Ghafari, Optimal PID control of a nano-Newton CMOS-MEMS capacitive force sensor for biomedical applications, Mech. Ind. 15, 139–145 (2014) [CrossRef] [Google Scholar]
  23. R.P. Nachane, K.R.K. Iyre, Yarn tension as a function of extension: a new approach, Text. Res. J. 57, 279–282 (1987) [CrossRef] [Google Scholar]
  24. Z.Y. Xi, C.H. Lu, J.C. Zhang, Modeling of computer-controlled AC servo feed system, Mater. Sci. Forum 471, 216–220 (2004) [CrossRef] [Google Scholar]
  25. Q. Wang, C.H. Lu, W. Pan, IMC PID controller tuning for stable and unstable processes with time delay, Chem. Eng. Res. Des. 105, 120–129 (2016) [Google Scholar]
  26. Y. Zhang, Q.G. Wang, K.J. Astrom, Dominant pole placement for multi-loop control systems, Automatica 38, 1213–1220 (2002) [CrossRef] [Google Scholar]
  27. D. Chen, D.E. Seborg, PI/PID controller design based on direct synthesis and disturbance rejection, Ind. Eng. Chem. Res. 41, 4807–4822 (2002) [Google Scholar]
  28. M. Shamsuzzoha, M. Lee, IMC-PID controller design for improved disturbance rejection of time-delayed processes, Ind. Eng. Chem. Res. 46, 2077–2091 (2007) [Google Scholar]
  29. P. Zhang, Y. Wang, Effects of shear strain and annealing on the nano-precipitate phase and crystal orientation of 7055 aluminum alloy during cutting process. Vacuum 151, 247–253 (2018) [Google Scholar]
  30. Y. Zhang, C.H. Lu, J.K. Ma, Research on two methods for improving the axial static and dynamic characteristics of hydrostatic lead screws, Tribol. Int. 109, 152–164 (2017) [Google Scholar]
  31. Q. Li, B. Jicheng, F. Yinsheng, Z.Y. Zhang, Study of wire tension control system based on closed loop PID control in HS-WEDM, Int. J. Adv. Manuf. Technol. 82, 1089–1097 (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.