Open Access
Mechanics & Industry
Volume 20, Number 6, 2019
Article Number 617
Number of page(s) 12
Published online 29 November 2019
  1. S. Mishima, S.A. Kinnas, Application of a numerical optimization technique to the design of cavitating propellers in nonuniform flow, J. Ship Res. 41, 93–107 (1997) [Google Scholar]
  2. B. Epps, O. Víquez, C. Chryssostomidis, A method for propeller blade optimization and cavitation inception mitigation, J. Ship Prod. Des. 31, 88–99 (2015) [CrossRef] [Google Scholar]
  3. J.E. Bartels, D. Jürgens, The Voith Schneider Propeller: Current applications and new developments, Voith Turbo Marine GmbH & Company KG, Alexanderstr 18, 89522 (2006) [Google Scholar]
  4. J. Kirsten, Propeller, Google Patents, 1922 [Google Scholar]
  5. E. Schneider, Blade wheel, Google Patents, 1928 [Google Scholar]
  6. VOITH, The Voith GmbH, 2015. [Google Scholar]
  7. C.J. Henry, A Survey of Cycloidal Propulsion, Davidson Laboratory, Report No. 728, 1959 [Google Scholar]
  8. K. Taniguchi, Sea trial analysis of the vertical axis propellers. In Fourth Symposium on Naval Hydrodynamics: Propulsion Hydroelasticity, Office of Naval Research and Webb Institute of Naval Architecture, 1962, pp. 27–31 [Google Scholar]
  9. W.L. Haberman, E.E. Harley, Performance of Vertical Axis (Cycloidal) Propellers Calculated by Taniguchi's Method, Tech report, Report 1564, SR 0090101, Hydromechanics laboratory research and development report, Virginia, 1961 [Google Scholar]
  10. J.A. Sparenberg, On the Efficiency of a Vertical Axis Propeller, Proceedings of Third Symposium on Naval Hydrodynamics (High Performance Ships) ONR ACR-65, 1960, pp. 45–60 [Google Scholar]
  11. J.A. Sparenberg, R. de Graaf, On the Optimum one-bladed cycloidal propeller, J. Eng. Math. 3, 1–20 (1969) [Google Scholar]
  12. E.C. James, A Small Perturbation Theory for Cycloidal Propellers, PhD Thesis CIT, Pasadena, 1971 [Google Scholar]
  13. T. Brockett, Hydrodynamic analysis of cycloidal propulsors. In Propellers-Shafting Symposium, The Society of Naval Architects and Marine Engineers, 1991 [Google Scholar]
  14. J. van Manen, T. van Manen, A new way of simulating whale tail propulsion, 21 Symposium on Naval Hydrodynamics, 1996 [Google Scholar]
  15. B.V. Nakonechny, Experimental Performance of a Six Bladed Vertical Axis Propeller, DTMB Report 1446, 1961 [Google Scholar]
  16. B.V. Nakonechny, Design of a 9 inch Cycloidal Propeller Model Unit and Some Experimental Results, NSRDC Report 3150, 1975 [Google Scholar]
  17. J. van Manen, Results of systematic tests with vertical axis propellers, Int. Shipbuild. Progr. 13, 382–398 (1966) [CrossRef] [Google Scholar]
  18. N.L. Ficken, Conditions for the Maximum Efficiency Operation of Cycloidal Propellers, SNAME Chesapeake Section Paper, 1966 [Google Scholar]
  19. E. Bjarne, Comparison of a Cycloidal Propeller with Azimuth Thrusters with Regard to Efficiency, Cavitation and Noise, Proceedings of International Conference on Propulsion for Small Craft, RINA, 1982 [Google Scholar]
  20. N. Bose, P.S.K. Lai, Experimental performance of a trochoidal propeller with high-aspect ratio blades, J. Mar. Technol. 26 (1989) [Google Scholar]
  21. D. Jurgens, M. Palm, S. Singer, K. Urban, Numerical optimization of the Voith-Schneider Propeller, ZAMM J. Appl. Math. Mech. 87, 698–710 (2007) [CrossRef] [Google Scholar]
  22. I.S. Hwang, S.J. Kim, Aerodynamic performance enhancement of cycloidal rotor according to blade pivot point movement and preset angle adjustment, KSAS Int. J. 9, 58–63 (2008) [Google Scholar]
  23. D. Jürgens, M. Palm, Voith Schneider Propeller-An Efficient Propulsion System for DP Controlled Vessels, Proc. of the Dynamic Positioning Conference, 2009 [Google Scholar]
  24. M. Palm, D. Jürgens, D. Bendl, Numerical and Experimental Study on Ventilation for Azimuth Thrusters and Cycloidal Propellers, Proc. 2nd Int. Symp. Marine Propulsors smp, 2011 [Google Scholar]
  25. E. Esmailian, H. Ghassemi, S.A. Heidari, Numerical investigation of the performance of voith schneider propulsion, Am. J. Mar. Sci. 2, 58–62 (2014) [Google Scholar]
  26. J. Friesch, Cavitation Studies at the Hamburg Ship Model Basin (HSVA), Hydrodynamic Symposium − Voith Schneider Propulsion, Heidenheim, March, 2006 [Google Scholar]
  27. D. Jürgens, H.-J. Heinke, Voith Schneider Propeller (VSP)-Investigations of the cavitation behaviour. First International Symposium on Marine Propulsors, SMP, 2009 [Google Scholar]
  28. J. Rom, High angle of attack aerodynamics, Springer, New York, 1992 [CrossRef] [Google Scholar]
  29. H. Gao, H. Hu, Z.J. Wang, Computational study of unsteady flows around dragonflyand smooth airfoils at low Reynolds numbers, in 46th AIAA aerospace sciences meeting and exhibit, Nevada, Reno, 2008 [Google Scholar]
  30. F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32, 1598–1605 (1994) [Google Scholar]
  31. M. Peric, S. Ferguson, The advantage of polyhedral meshes, Dynamics 24, 45 (2005) [Google Scholar]
  32. M. Peric, Flow simulation using control volumes of arbitrary polyhedral shape, ERCOFTAC Bulletin, No. 62, 2004 [Google Scholar]
  33. A.W. Ruys, A Comparison of Some Published Results of Tests on Vertical Axis Propellers, International Shipbuilding Progress, 1966, 13 [Google Scholar]
  34. P.E. Raad, I.B. Celik, U. Ghia, P.J. Roache, C.J. Freitas, H. Coleman, Procedure for estimation and reporting of uncertainty due to discretization in CFD applications, J. Fluids Eng. 130, 078001 (2008) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.