Open Access
Issue
Mechanics & Industry
Volume 20, Number 6, 2019
Article Number 606
Number of page(s) 14
DOI https://doi.org/10.1051/meca/2019039
Published online 04 September 2019
  1. EN 747–2. Furniture − Bunk beds and high beds for domestic use − Part 2: Test methods, 2012 [Google Scholar]
  2. C.A. Eckelman, A technique for structural modeling of front rails for sofas, Holz Roh Werkst. 60 , 60–65 (2002) [CrossRef] [Google Scholar]
  3. J. Mackerle, Finite element analyses in wood research: a bibliography, Wood Sci. Technol. 39 , 579–600 (2005) [Google Scholar]
  4. C.A. Eckelman, Performance testing of side chairs, Holz Roh Werkst. 57 , 227­–234 (1999) [CrossRef] [Google Scholar]
  5. C.A. Eckelman, E. Haviarova, Performance tests of school chairs constructed with round mortise and tenon joints, Forest Prod. J. 56 , 51–57 (2006) [Google Scholar]
  6. A. Kasal, Determination of the strength of various sofa frames with finite element analysis, G. U. J. Sci. 19 , 191–203 (2006) [Google Scholar]
  7. A. Kasal, Y.Z. Erdil, C.A. Eckelman, Shear force and bending moment capacities of joints constructed with glued corner blocks, Forest Prod. J. 56 , 74–79 (2006) [Google Scholar]
  8. A. Kasal, Y.Z. Erdil, J. Zhang, H. Efe, E. Avci, Estimation equations for moment resistances of L-type screw corner joints in case goods furniture, Forest Prod. J. 58 , 21–27 (2008) [Google Scholar]
  9. T. Nicholls, R. Crisan, Study of the stress-strain state in corner joints and box-type furniture using Finite Element Analysis (FEA), Holz Roh Werkst. 60 , 66–71 (2002) [CrossRef] [Google Scholar]
  10. S. Mishra, M. Sain, Strength analysis of chair base from wood plastic composites by finite element method, Mater. Res. Innov. 11 , 137–143 (2007) [CrossRef] [Google Scholar]
  11. M.H. Çolakoğlu, A.C. Apay, Finite element analysis of wooden chair strength in free drop, Int. J. Phys. Sci. 7 , 1105–1114 (2012) [Google Scholar]
  12. H. Makhlouf, L. Chevalier, E. Favier, E. Launay, A stochastic approach for the evaluation of the reliability of wood furniture in an industrial context: managing virtual standardization tests, Mech. Ind. 17 , 503 (2016) [CrossRef] [Google Scholar]
  13. H. Makhlouf, L. Chevalier, B. Jacquet-Faucillon, E. Launay, Modeling the influence of connecting elements in wood products behavior: a numerical multi-scale approach, Mech. Ind. 19 , 301 (2018) [CrossRef] [Google Scholar]
  14. X. Wang, M. Mohammad, A. Salenikovich, R.-M. Knudson, J. Zhang, Fatigue bending resistance of metal-plated joints constructed of oriented strandboard for upholstered furniture frames, Forest Prod. J. 57 , 59–63 (2007) [Google Scholar]
  15. T. Nakano, Fatigue and Heating in the Non-Linear Region for Wood, Holzforschung, Int. J. Biol. Chem. Phys. Technol. Wood 51 , 309–315 (1997) [Google Scholar]
  16. B. Bohannan, K. Kanvik, Fatigue Strength of Finger Joints. Forest Products Laboratory Madison Wis, U.S.D.A. Forest Service Research paper FPL, 114 , 1–8 (1969) [Google Scholar]
  17. L. Ozola, Statistical estimates of strength and stiffness properties of timber, in: Proceedings of the International Conference on Probabilistic Models in Timber Engineering, Tests, Models, Applications: COST Action E, Arcachon, France, September 8–9 (2005), 24, 8–9 [Google Scholar]
  18. Joint Committee on Structural Safety (JCSS), Probabilistic Model Code. Part 3: Resistance Models − 3.5 Properties of Timber, 2006 [Google Scholar]
  19. C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 , 379–423 (1948) [CrossRef] [MathSciNet] [Google Scholar]
  20. C.E. Shannon, A mathematical theory of communication, SIGMOBILE Mob. Comput. Commun. Rev. 5 , 3–55 (2001) [CrossRef] [Google Scholar]
  21. R. Balian, Random matrices and information theory, Il Nuovo Cimento B (1965-1970) 57 , 183–193 (1968) [CrossRef] [Google Scholar]
  22. E.T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 , 620–630 (1957a) [Google Scholar]
  23. E.T. Jaynes, Information theory and statistical mechanics. II, Phys. Rev. 108 , 171­–190 (1957b) [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  24. E.T. Jaynes, Probability Theory: The Logic of Science, Cambridge University Press, 2003 [CrossRef] [Google Scholar]
  25. C. Soize, An Accelerated Course with Advanced Applications in Computational Engineering, Vol. 47 of Interdisciplinary Applied Mathematics, Springer International Publishing, Berlin, Heidelberg, CA, 2017 [Google Scholar]
  26. J.N. Kapur, H.K. Kesavan, Entropy Optimization Principles and Their Applications, Springer Netherlands, Dordrecht, 1992, pp. 3–20 [Google Scholar]
  27. G. Jumarie, Maximum Entropy, Information Without Probability and Complex Fractals: Classical and Quantum Approach, Vol. 112 of Fundamental Theories of Physics, Springer Science & Business Media, Dordrecht, 2000 [Google Scholar]
  28. T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley-Interscience, New York, USA, 2006 [Google Scholar]
  29. M.H. Kalos, P.A. Whitlock, Monte Carlo Methods, Volume 1: Basics, John Wiley & Sons, Chistester, 1992 [Google Scholar]
  30. G.S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications, 1st Edition, Springer Series in Operations Research and Financial Engineering, Springer-Verlag, New York, 1996 [Google Scholar]
  31. R.E. Caflisch, Monte Carlo and quasi-Monte Carlo methods, Acta Numer. 7 , 1–49 (1998) [CrossRef] [Google Scholar]
  32. G. Schüeller, P.D. Spanos, Monte Carlo Simulation, A.A. Balkema, Rotterdam, 2001 [Google Scholar]
  33. R.Y. Rubinstein, D.P. Kroese, Simulation and the Monte Carlo method, Vol. 10 of Wiley Series in Probability and Statistics, John Wiley & Sons, New York, 2016 [CrossRef] [Google Scholar]
  34. A.W. Bowman, A. Azzalini, Applied Smoothing Techniques for Data Analysis, Oxford University Press, Oxford, 1997 [Google Scholar]
  35. G.H. Givens, J.A. Hoeting, Computational Statistics, 2nd Edition, John Wiley & Sons, Hoboken, New Jersey, 2013 [Google Scholar]
  36. I. Horová, J. Koláček, J. Zelinka, Kernel Smoothing in MATLAB: Theory and Practice of Kernel Smoothing, World Scientific Publishing Co. Pte. Ltd., Singapore, 2012 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.