Open Access
Issue
Mechanics & Industry
Volume 20, Number 6, 2019
Article Number 624
Number of page(s) 7
DOI https://doi.org/10.1051/meca/2019057
Published online 02 December 2019
  1. W.A. Khan, N.M. Hoang, B. Tai, W.N.P. Hung, Through-tool minimum quantity lubrication and effect on machinability, J. Manuf. Process. 34, 750–757 (2018) [CrossRef] [Google Scholar]
  2. R.R. Srikant, M.M.S. Prasad, M. Amrita, V. Sitaramaraju, Nanofluids as a potential solution for Minimum Quantity Lubrication: A review, J. Eng. Manuf. 228, 3–20 (2014) [CrossRef] [Google Scholar]
  3. N. Banerjee, A. Sharma, Improving machining performance of Ti-6Al-4V through multi-point minimum quantity lubrication method, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 233, 321–336 (2018) [CrossRef] [Google Scholar]
  4. S. Zhang, J.F. Li, Y.W. Wang, Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions, J. Clean. Prod. 32, 81–87 (2012) [CrossRef] [Google Scholar]
  5. E.A. Rahim, H. Sasahara, Investigation of tool wear and surface integrity on MQL machining of Ti-6AL-4V using biodegradable oil, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 225, 1505–1511 (2011) [CrossRef] [Google Scholar]
  6. A.K. Sharma, A.K. Tiwari, A.R. Dixit, Effects of minimum quantity lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A review, J. Clean. Prod. 127, 1–18 (2016) [CrossRef] [Google Scholar]
  7. A. Duchosal, S. Werda, R. Serra, R. Leroy, H. Hamdi, Numerical modeling and experimental measurement of MQL im- pingement over an insert in a milling tool with inner channels, Int. J. Mach. Tools Manuf. 94, 37–47 (2015) [CrossRef] [Google Scholar]
  8. R.P. Zeilmann, W.L. Weingaertner, Analysis of temperature during drilling of Ti6Al4V with minimal quantity of lubricant, J. Mater. Process. Technol. 179, 124–127 (2006) [CrossRef] [Google Scholar]
  9. T. Aoyama, Development of a mixture supply system for machining with minimal quantity lubrication, CIRP Ann. Manuf. Technol. 51, 289–292 (2002) [CrossRef] [Google Scholar]
  10. A. Duchosal, R. Serra, R. Leroy, Numerical study of the inner canalization geometry optimization in a milling tool used in micro quantity lubrication, Mech. Ind. 15, 435–442 (2014) [CrossRef] [Google Scholar]
  11. L.N. López de Lacalle, C. Angulo, A. Lamikiz, J.A. Sánchez, Experimental and numerical investigation of the effect of spray cutting fluids in high speed milling, J. Mater. Process. Technol. 172, 11–15 (2006) [CrossRef] [Google Scholar]
  12. T. Childs, K. Maekawa, T. Obikawa, Y. Yamane, Metal Machining Theory and Applications, John Wiley & Sons, New York, 2000 [Google Scholar]
  13. J.A. Bailey, Friction in metal machining-Mechanical aspects, Wear 31, 243–275 (1975) [CrossRef] [Google Scholar]
  14. C. Claudin, a. Mondelin, J. Rech, G. Fromentin, Effects of a straight oil on friction at the tool–workmaterial interface in machining, Int. J. Mach. Tools Manuf. 50, 681–688 (2010) [CrossRef] [Google Scholar]
  15. S. Masoudi, A. Vafadar, M. Hadad, F. Jafarian, Experimental investigation into the effects of nozzle position, workpiece hardness, and tool type in MQL turning of AISI 1045 steel, Mater. Manuf. Process. 33, 1011–1019 (2018) [CrossRef] [Google Scholar]
  16. S. Ekinovic, H. Prcanovic, E. Begovic, Investigation of influence of MQL machining parameters on cutting forces during MQL turning of carbon steel St52-3, Procedia Eng. 132, 608–614 (2015) [CrossRef] [Google Scholar]
  17. A.E. Diniz, R. Micaroni, Influence of the direction and flow rate of the cutting fluid on tool life in turning process of AISI 1045 steel, Int. J. Mach. Tools Manuf. 47, 247–254 (2007) [CrossRef] [Google Scholar]
  18. A. Attanasio, M. Gelfi, C. Giardini, C. Remino, Minimal quantity lubrication in turning: effect on tool wear, Wear 260, 333–338 (2006) [CrossRef] [Google Scholar]
  19. M. Hadad, B. Sadeghi, Minimum quantity lubrication-MQL turning of AISI 4140 steel alloy, J. Clean. Prod. 54, 332–343 (2013) [CrossRef] [Google Scholar]
  20. M. Ozawa, A. Hosokawa, R. Tanaka, T. Furumoto, T. Ueda, ozawa2009, J. Jpn. Soc. Abras. Technol. 53, 88–93 (2009) [Google Scholar]
  21. S. Werda, A. Duchosal, G. Le Quilliec, A. Morandeau, R. Leroy, Minimum quantity lubrication advantages when applied to insert flank face in milling, Int. J. Adv. Manuf. Technol. 92, 2391–2399 (2017) [CrossRef] [Google Scholar]
  22. F. Zemzemi, J. Rech, W. Ben Salem, A. Dogui, P. Kapsa, Identification of a friction model at tool/chip/workpiece interfaces in dry machining of AISI4142 treated steels, J. Mater. Process. Technol. 209, 3978–3990 (2009) [CrossRef] [Google Scholar]
  23. C. Bonnet et al., Identification of a friction model − Application to the context of dry cutting of an AISI 316L austenitic stainless steel with a TiN coated carbide tool, Int. J. Mach. Tools Manuf. 48, 1211–1223 (2008) [CrossRef] [Google Scholar]
  24. F. Zemzemi, W. Bensalem, J. Rech, A. Dogui, P. Kapsa, New tribometer designed for the characterisation of the friction properties at the tool/chip/workpiece interfaces in machining, Tribotest 14, 11–25 (2008) [CrossRef] [Google Scholar]
  25. P. Faverjon, J. Rech, R. Leroy, M. Orset, Influence of MQL on friction coefficient and workmaterial adhesion during machining of cast aluminum with various cutting tool substrates made of PCD, HSS, and carbides, J. Tribol. 135, 4 (2012) [Google Scholar]
  26. F. Cabanettes, J. Rolland, F. Dumont, J. Rech, Z. Dimkovski, Influence of minimum quantity lubrication on friction characterizing tool–aluminum alloy contact, J. Tribol. 138, 021107 (2016) [CrossRef] [Google Scholar]
  27. J.M. Challen, P.L.B. Oxley, An explanation of the different regimes of friction and wear using asperity deformation models, Wear 53, 229–243 (1979) [CrossRef] [Google Scholar]
  28. G.M. Hamilton, Explicit equations for the stresses beneath a sliding spherical contact, Proc. Inst. Mech. Eng. 197C, 53–59 (1983) [Google Scholar]
  29. J. Rech, C. Claudin, E. D'Eramo, Identification of a friction model-application to the context of dry cutting of an AISI 1045 annealed steel with a TiN-coated carbide tool, Tribol. Int. 42, 738–744 (2009) [CrossRef] [Google Scholar]
  30. C. Bonnet, F. Valiorgue, J. Rech, H. Hamdi, Improvement of the numerical modeling in orthogonal dry cutting of an AISI 316L stainless steel by the introduction of a new friction model, CIRP J. Manuf. Sci. Technol. 1, 114–118 (2008) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.