Open Access
Issue
Mechanics & Industry
Volume 20, Number 6, 2019
Article Number 626
Number of page(s) 16
DOI https://doi.org/10.1051/meca/2019064
Published online 02 December 2019
  1. R.S. Dwyer-Joyce, J.C. Hamer, J.M. Hutchinson, E. Ioannides, R.S. Sayles, A pitting fatigue life model for gear tooth contacts, Tribol. Ser. 18, 391–400 (1991) [CrossRef] [Google Scholar]
  2. J.A. Brandão, R. Martins, J.H.O. Seabra, J. Castro, An approach to the simulation of concurrent gear micropitting and mild wear, Wear 324, 64–73 (2015) [Google Scholar]
  3. A.V. Olver, The mechanism of rolling contact fatigue: an update, Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 219, 313–330 (2005) [CrossRef] [Google Scholar]
  4. R.W. Snidle, H.P. Evans, M.P. Alanou, M.J.A. Holmes, Understanding Scuffing and Micropitting of Gears, Williamsburg, USA, 2004 [Google Scholar]
  5. R.L. Errichello, Morphology of Micropitting, 2012 [Google Scholar]
  6. A. Oila, S.J. Bull, Assessment of the factors influencing micropitting in rolling/sliding contacts, Wear 258, 1510–1524 (2005) [Google Scholar]
  7. P. Rycerz, A. Kadiric, The influence of slide-roll ratio on the extent of micropitting damage in rolling- sliding contacts pertinent to gear applications, Tribol. Lett. 2018, 1 (2018) [Google Scholar]
  8. N.R. Paulson, J.A.R. Bomidi, F. Sadeghi, R.D. Evans, Effects of crystal elasticity on rolling contact fatigue, Int. J. Fatigue 61, 67–75 (2014) [Google Scholar]
  9. N.R. Paulson, F. Sadeghi, W. Habchi, A coupled finite element EHL and continuum damage mechanics model for rolling contact fatigue, Tribol. Int. 107, 173–183 (2017) [Google Scholar]
  10. N. Raje, F. Sadeghi, J. Rateick, G. Richard, M.R. Hoeprich, A numerical model for life scatter in rolling element bearings, J. Tribol. 130, 011011 (2007) [Google Scholar]
  11. G.E. Morales-Espejel, Surface roughness effects in elastohydrodynamic lubrication: a review with contributions, Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 228, 1217–1242 (2013) [CrossRef] [Google Scholar]
  12. J.A. Greenwood, K.L. Johnson, The behaviour of transverse roughness in sliding elastohydrodynamically lubricated contacts, Wear 153, 107–117 (1992) [Google Scholar]
  13. J.A. Greenwood, G.E. Morales-Espejel, The behaviour of transverse roughness in EHL contacts, Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 208, 121–132 (1994) [CrossRef] [Google Scholar]
  14. G.E. Morales-Espejel, C.H. Venner, J.A. Greenwood, Kinematics of transverse real roughness in elastohydrodynamically lubricated line contacts using Fourier analysis, Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 214, 523–534 (2000) [CrossRef] [Google Scholar]
  15. G.E. Morales-Espejel, A.W. Wemekamp, A. Félix-Quiñonez, Micro-geometry effects on the sliding friction transition in elastohydrodynamic lubrication, Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 224, 621–637 (2010) [CrossRef] [Google Scholar]
  16. G.E. Morales-Espejel, A. Gabelli, The progression of surface rolling contact fatigue damage of rolling bearings with artificial dents, Tribol. Trans. 58, 418–431 (2015) [CrossRef] [Google Scholar]
  17. G.E. Morales-Espejel, P. Rycerz, A. Kadiric, Prediction of micropitting damage in gear teeth contacts considering the concurrent effects of surface fatigue and mild wear, Wear 398–399, 99–115 (2018) [Google Scholar]
  18. J.P. Noyel, Analyse Des Mécanismes d'initiation de Fissures En Fatigue de Contact: Approche Mésoscopique, Thèse, Université de Lyon, 2015 [Google Scholar]
  19. J.P. Noyel, F. Ville, P. Jacquet, A. Gravouil, C. Changenet, Development of a granular cohesive model for rolling contact fatigue analysis: crystal anisotropy modeling, Tribol. Trans. 59, 469–479 (2016) [CrossRef] [Google Scholar]
  20. M. Le, Influence Des Liserés de Carbures Induits Par La Nitruration Gazeuse Sur Les Mécanismes de Fissuration de Fatigue de Contacts Roulants, 2015 [Google Scholar]
  21. ASTM E112-13, Standard Test Methods for Determining Average Grain Size, 2013 [Google Scholar]
  22. H. Hertz, Über Die Berührung Fester Elastische Körper Und Über Die Harte, Verhandlungen des Vereins zur Beförderung des, 1882 [Google Scholar]
  23. P. Lamagnere, R. Fougeres, G. Lormand, A. Vincent, D. Girodin, G. Dudragne, F. Vergne, A physically based model for endurance limit of bearing steels, ASME 120, 421–426 (1998) [Google Scholar]
  24. N. Raje, F. Sadeghi, R.G. Rateick, A statistical damage mechanics model for subsurface initiated spalling in rolling contacts, J. Tribol. 130, 042201 (2008) [Google Scholar]
  25. Y. Diab, F. Ville, P. Velex, Prediction of power losses due to tooth friction in gears, Tribol. Trans. 49, 260–270 (2006) [CrossRef] [Google Scholar]
  26. A. Fabre, L. Barrallier, M. Desvignes, H.P. Evans, M.P. Alanou, Microgeometrical influences on micropitting fatigue damage: multi-scale analysis, Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 225, 419–427 (2011) [CrossRef] [Google Scholar]
  27. G.E. Morales-Espejel, V. Brizmer, Micropitting modelling in rolling-sliding contacts: application to rolling bearings, Tribol. Trans. 54, 625–643 (2011) [CrossRef] [Google Scholar]
  28. A. Labiau, F. Ville, P. Sainsot, E. Querlioz, A.A. Lubrecht, Effect of sinusoidal surface roughness under starved conditions on rolling contact fatigue, Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 222, 193–200 (2008) [CrossRef] [Google Scholar]
  29. K.L. Johnson, Contact Mechanics, Cambridge university Press, 1987 [Google Scholar]
  30. I. Rychlik, Simulation of load sequences from rainflow matrices: Markov Method, Int. J. Fatigue 18, 429–438 (1996) [Google Scholar]
  31. J. Dufailly, Etude Géométrique Des Engrenages Cylindriques de Transmission de Puissance, 1997 [Google Scholar]
  32. R. Martins, C. Locatelli, J.H.O. Seabra, Evolution of tooth flank roughness during gear micropitting tests, Ind. Lubr. Tribol. 63, 34–45 (2011) [CrossRef] [Google Scholar]
  33. M. Kaneta, H. Yatsuzuka, Y. Murakami, Mechanism of crack growth in lubricated rolling/sliding contact, ASLE Trans. 28, 407–414 (1985) [CrossRef] [Google Scholar]
  34. A.F. Bower, The influence of crack face friction and trapped fluid on surface initiated rolling contact fatigue cracks, J. Tribol. 110, 704 (1988) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.