Issue
Mechanics & Industry
Volume 20, Number 8, 2019
Selected scientific topics in recent applied engineering – 20 Years of the ‘French Association of Mechanics – AFM’
Article Number 806
Number of page(s) 13
DOI https://doi.org/10.1051/meca/2020040
Published online 02 July 2020
  1. F. Taylor, On the art of cutting metals, 1907 [Google Scholar]
  2. B. Niebel, Mechanized process selection for planning new designs, ASME Paper, vol. 737, 1965 [Google Scholar]
  3. F. Giusti, M. Santochi, G. Dini, COATS: an Expert Module for Optimal Tool Selection, CIRP Ann. Manuf. Technol. 35, 337–340 (1986) [CrossRef] [Google Scholar]
  4. B. Denkena, M. Shpitalni, P. Kowalski, G. Molcho, Y. Zipori, Knowledge management in process planning, CIRP Ann.- Manuf. Technol. 56, 175–180 (2007) [CrossRef] [Google Scholar]
  5. I. Ham, S.C.Y. Lu, Computer-Aided Process Planning: The present and the future, CIRP Ann. Manuf. Technol. 37, 591–601 (1988) [Google Scholar]
  6. H. Eskicioglu, B.J. Davies, An interactive process planning system for prismatic parts (ICAPP), Int. J. Mach. Tool Des. Res. 21, 193–206 (1981) [CrossRef] [Google Scholar]
  7. F. Villeneuve, Génération automatique des processus de fabrication, in Fabrication assistée par ordinateur, Lavoisier, 2002, pp. 295–350 [Google Scholar]
  8. W. Eversheim, J. Schneewind, Computer-aided process planning—State of the art and future development, Robot. Comput. Integr. Manuf. 10, 65–70 (1993) [Google Scholar]
  9. L. Alting, H. Zhang, Computer Aided Process Planning: the state of the art survey, Int. J. Prod. Res. 27, 553–585 (1989) [Google Scholar]
  10. D.S. Llanes-Coronel, et al., New promising Euphorbiaceae extracts with activity in human lymphocytes from primary cell cultures, Immunopharmacol. Immunotoxicol. 33, 279–290 (2011) [CrossRef] [PubMed] [Google Scholar]
  11. G. Noël, S. Brzakowski, A la recherche du temps à gagner, pourquoi la technologie de groupe, in La gamme automatique en usinage, Hermès, 1990, pp. 54–64 [Google Scholar]
  12. H.A. ElMaraghy, Evolution and Future Perspectives of CAPP, CIRP Ann. - Manuf. Technol. 42, 739–751 (1993) [CrossRef] [Google Scholar]
  13. R.F. Harik, Spécifications de fonctions pour un système d’aide à la génération automatique de gamme d’usinage: Application aux pièces aéronautiques de structure, prototype logiciel dans le cadre du projet RNTL USIQUICK, Thèse Dr., 178, 2007 [Google Scholar]
  14. R.A. Wysk, An automated process planning and selection program: appas, Thèse de doctorat, Purdue University, 1977 [Google Scholar]
  15. W. Eversheim, H. Fucks, K.H. Zons, Automated Process Planning with Regard to Production by Application of the System AUTAP for Control Problems, in 12th CIRP international seminar on Manufacturing Systems, 1980 [Google Scholar]
  16. B. Anselmetti, Génération automatique de gammes de tournage et contribution à la gestion d’une cellule de production, Habilitation à diriger des recherches, Université de Nancy 1, 1994 [Google Scholar]
  17. C.L. Ramsey, J. a Reggia, D.S. Nau, A. Ferrentino, A comparative analysis of methods for expert systems, Int. J. Manmach. Stud. 24, 475–499 (1986) [CrossRef] [Google Scholar]
  18. A.H. Vant Erve, H.J.J. Kals, XPLANE, a Generative Computer Aided Process Planning System for Part Manufacturing, CIRP Ann. Manuf. Technol. 35, 325–329 (1986) [Google Scholar]
  19. F. Krause, Technological Planning Systems for the Future, Comput. Ind. 14, 109–116 (1990) [Google Scholar]
  20. H.J. Steudel, Computer-aided process planning: past, present and future, Int. J. Prod. Res. 22, 253–266 (1984) [Google Scholar]
  21. S. Gouda, K. Taraman, CAPP: PAST, Present and Future, Soc. Manuf. Eng. 22, 253–266 (1989) [Google Scholar]
  22. H.B. Marri, A. Gunasekaran, R.J. Grieve, Computer-aided process planning: A state of art, Int. J. Adv. Manuf. Technol. 14, 261–268 (1998) [Google Scholar]
  23. X. Xu, L.H. Wang, S.T. Newman, Computer-aided process planning: a critical review of recent developments and future trends, Int. J. Comput. Integr. Manuf. 24, 1–31 (2011) [Google Scholar]
  24. Y. Yusof, K. Latif, Survey on computer-aided process planning, Int. J. Adv. Manuf. Technol. 75, 77–89 (2014) [Google Scholar]
  25. C. Liu, Y. Li, W. Wang, W. Shen, A feature-based method for NC machining time estimation, Robot. Comput. Integr. Manuf. 29, 8–14 (2013) [Google Scholar]
  26. J.Y. Jung, Manufacturing cost estimation for machined parts based on manufacturing features, J. Intell. Manuf. 13, 227–238 (2002) [Google Scholar]
  27. A. Wright, I. Darbyshir, M. Park, B. Davis, Excap and Icap: knowledge-based systems for process planning, in 19th CIRP Seminar on Manufacturing Systems, 1987, pp. 309–313 [Google Scholar]
  28. S.H. Yeo, Knowledge-based feature recognizer for machining, Comput. Integr. Manuf. Syst. 7, 29–37 (1994) [CrossRef] [Google Scholar]
  29. N. Öztürk, F. Öztürk, Neural network based non-standard feature recognition to integrate CAD and CAM, Comput. Ind. 45, 123–135 (2001) [Google Scholar]
  30. X. Wang, W. Wang, Y. Huang, N. Nguyen, K. Krishnakumar, Design of neural network-based estimator for tool wear modeling in hard turning, J. Intell. Manuf., 19, 383–396 (2008) [Google Scholar]
  31. M. Salehi, R. Tavakkoli-Moghaddam, Application of genetic algorithm to computer-aided process planning in preliminary and detailed planning, Eng. Appl. Artif. Intell. 22, 1179–1187 (2009) [Google Scholar]
  32. T. Dereli, I.H. Filiz, Optimisation of process planning functions by genetic algorithms, Comput. Ind. Eng. 36, 281–308 (1999) [Google Scholar]
  33. C. Kahraman, T. Ertay, G. Büyüközkan, A fuzzy optimization model for QFD planning process using analytic network approach, Eur. J. Oper. Res. 171, 390–411 (2006) [Google Scholar]
  34. Y. Chen, A. Hui, R. Du, A fuzzy expert system for the design of machining operations, Int. J. Mach. Tools Manuf. 35, 1605–1621 (1995) [Google Scholar]
  35. D. Kiritsis, K.P. Neuendorf, P. Xirouchakis, Petri net techniques for process planning cost estimation, Adv. Eng. Softw. 30, 375–387 (1999) [Google Scholar]
  36. R. Agrawal, S. Shukla, S. Kumar, M. Tiwari, Multi-agent system for distributed computer-aided process planning problem in e-manufacturing environment, Int. J. Adv. Manuf. Technol. 44, 579–594 (2009) [Google Scholar]
  37. W. Shen, Q. Hao, H.J. Yoon, D.H. Norrie, Applications of agent-based systems in intelligent manufacturing: An updated review, Adv. Eng. Inform. 20, 415–431 (2006) [CrossRef] [Google Scholar]
  38. S. Wan, J. Gao, D. Li, Y. Tong, F. He, Web-based process planning for machine tool maintenance and services, Procedia CIRP, 38, 165–170 (2015) [Google Scholar]
  39. H.C.W. Lau, C.K. M. Lee, B. Jiang, I.K. Hui, K.F. Pun, Development of a computer-integrated system to support CAD to CAPP, Int. J. Adv. Manuf. Technol. 26, 1032–1042 (2005) [Google Scholar]
  40. T. Yifei, L. Dongbo, L. Changbo, Y. Minjian, A feature-extraction-based process-planning system, Int. J. Adv. Manuf. Technol. 38, 1192–1200 (2008) [Google Scholar]
  41. L. Wang, M. Holm, G. Adamson, Embedding a process plan in function blocks for adaptive machining, CIRP Ann. Manuf. Technol. 59, 433–436 (2010) [Google Scholar]
  42. L. Wang, G. Adamson, M. Holm, P. Moore, A review of function blocks for process planning and control of manufacturing equipment, J. Manuf. Syst. 31, 269–279 (2012) [Google Scholar]
  43. A.C. Hupman, A.E. Abbas, T.L. Schmitz, Incentives versus value in manufacturing systems: An application to high-speed milling, J. Manuf. Syst. 36, 20–26 (2015) [Google Scholar]
  44. D. Bouyssou, D. Dubois, M. Pirlot, H. Prade, Concepts et Méthodes pour l’aide à la décision - outils de modélisation, Vol 1. Lavoisier, 2006 [Google Scholar]
  45. D. Bouyssou, D. Dubois, M. Pirlot, H. Prade, Concepts et Méthodes pour l’aide à la décision - analyse multicritère, Vol 3. Lavoisier, 2006 [Google Scholar]
  46. J.H. Holland, Adaptation in Natural and Artifical Systems, 2nd edn. (MIT Press Books, Cambridge, 1992) [CrossRef] [Google Scholar]
  47. C.R. Reeves, A genetic algorithm for flowshop sequencing, Comput. Oper. Res. 22, 5–13 (1995) [Google Scholar]
  48. T. Back, D.B. Fogel, Z. Michalewicz, Handbook of evolutionary computation (IOP Publishing Ltd., Bristol, 1997) [CrossRef] [Google Scholar]
  49. M. Mitchell, An introduction to genetic algorithms (MIT Press Books, Bristol, 1998) [Google Scholar]
  50. J.M. Yunker, J.D. Tew, Simulation optimization by genetic search, Math. Comput. Simul. 37, 17–28 (1994) [Google Scholar]
  51. B.Y. Lee, Y.S. Tarng, Cutting-parameter selection for maximizing production rate or minimizing production cost in multistage turning operations, J. Mater. Process. Technol. 105, 61–66 (2000) [CrossRef] [Google Scholar]
  52. J. Karandikar, T. Kurfess, Cost optimization and experimental design in milling using surrogate models and value of information, J. Manuf. Syst. 37, 479–486 (2014) [Google Scholar]
  53. J. Vivancos, C.J. Luis, L. Costa, J.A. Ortiz, Optimal machining parameters selection in high speed milling of hardened steels for injection moulds, J. Mater. Process. Technol. 155–156, 1505–1512 (2004) [CrossRef] [Google Scholar]
  54. A. Iqbal, N. He, L. Li, N.U. Dar, A fuzzy expert system for optimizing parameters and predicting performance measures in hard-milling process, Expert Syst. Appl. 32, 1020–1027 (2007) [Google Scholar]
  55. M. Leonesio, L. Molinari Tosatti, S. Pellegrinelli, a. Valente, An integrated approach to support the joint design of machine tools and process planning, CIRP J. Manuf. Sci. Technol. 6, 181–186 (2013) [Google Scholar]
  56. P. Conradie, D. Dimitrov, G. Oosthuizen, A Cost Modelling Approach for Milling Titanium Alloys, Procedia CIRP 46, 412–415 (2016) [Google Scholar]
  57. C. Yang, T.S. Lin, Developing an Integrated Framework for Feature-Based Early Manufacturing Cost Estimation, Int. J. Adv. Manuf. Technol. 13, 307–320 (1997) [Google Scholar]
  58. V. Pateloup, “Amélioration du comportement cinématique des machines outils UGV lors du calcul de trajets d’usinage: Application à la génération de trajets d’évidement de poches, ” thèse de l’Université Blaise Pascal, 2005 [Google Scholar]
  59. Y. Altintas, S. Tulsyan, Prediction of part machining cycle times via virtual CNC, CIRP Ann. Manuf. Technol. 64, 361–364 (2015) [Google Scholar]
  60. B.S. So, Y.H. Jung, J.W. Park, D.W. Lee, Five-axis machining time estimation algorithm based on machine characteristics, J. Mater. Process. Technol. 187, 37–40 (2007) [CrossRef] [Google Scholar]
  61. M. Monreal, C.A. Rodriguez, Influence of tool path strategy on the cycle time of high-speed milling, CAD Comput. Aided Des. 35, 395–401 (2003) [CrossRef] [Google Scholar]
  62. E.Y. Heo, D.W. Kim, B.H. Kim, F. Frank Chen, Estimation of NC machining time using NC block distribution for sculptured surface machining, Robot. Comput. Integr. Manuf. 22, 437–446 (2006) [Google Scholar]
  63. S. Hassini, Qualification multi-critères des gammes d ’usinage: application aux pièces de structure aéronautique en alliage Airware, Institut Pascal, UBP, IFMA, CNRS, 2015 [Google Scholar]
  64. D. Arbis, V.V. Dixit, T.H. Rashidi, Impact of risk attitudes and perception on game theoretic driving interactions and safety, Accid. Anal. Prev. 94, 135–142, (2016) [CrossRef] [PubMed] [Google Scholar]
  65. A. Fujimoto, H. Takahashi, Flexible modulation of risk attitude during decision-making under quota, Neuroimage, 139, 304–312 (2016) [CrossRef] [PubMed] [Google Scholar]
  66. C.A. Bana e Costa, L. Ensslin, é. C. Cornêa, J.-C. Vansnick, Decision Support Systems in action: Integrated application in a multicriteria decision aid process, Eur. J. Oper. Res. 113, 315–335 (1999) [Google Scholar]
  67. H. Raiffa, Preferences for Multi-Attributed Alternatives, 1969 [Google Scholar]
  68. W. Edwards, Social utilities. Proceedings of a symposium: Decision and Risk Analysis - Powerful new tools for management. Annapolis: U.S. Naval Academy, 1971 [Google Scholar]
  69. D. Bouyssou, T. Marchant, M. Pirlot, A. Tsoukiàs, P. Vincke, Evaluation and decision models with multiple criteria: Stepping stones for the analyst (Springer, Boston, 2006) [Google Scholar]
  70. A.E. Abbas, L. Yang, R. Zapata, T.L. Schmitz, Application of decision analysis to milling profit maximisation: an introduction, Syst. Eng. 35, 64–88 (2009) [Google Scholar]
  71. B. Arezoo, K. Ridgway, A. Al-Ahmari, Selection of cutting tools and conditions of machining operations using an expert system, Comput. Ind. 42, 43–58 (2000) [Google Scholar]
  72. A. Mardani, A. Jusoh, E.K. Zavadskas, Fuzzy multiple criteria decision-making techniques and applications - Two decades reviewfrom 1994 to 2014, Expert Syst. Appl. 42, 4126–4148 (2015) [Google Scholar]
  73. S.K. Ong, M.J. Sun, A.Y.C. Nee, A fuzzy set AHP-based DFM tool for rotational parts, J. Mater. Process. Technol. 138, 223–230 (2003) [CrossRef] [Google Scholar]
  74. M. Yurdakul, AHP as a strategic decision-making tool to justify machine tool selection, J. Mater. Process. Technol. 146, 365–376 (2004) [CrossRef] [Google Scholar]
  75. R.W. Saaty, The analytic hierarchy process-what it is and how it is used, Math. Model. 9, 161–176 (1987) [CrossRef] [Google Scholar]
  76. F. Ounnar, A. Naamane, P. Pujo, N.-K. M’Sirdi, Intelligent Control of Renewable Holonic Energy Systems, Energy Procedia; 2013 Proceedings on International Conference Mediterranean Green Energy Forum MGEF-13, vol. 42, pp. 465–472 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.