Mechanics & Industry
Volume 20, Number 8, 2019
Selected scientific topics in recent applied engineering – 20 Years of the ‘French Association of Mechanics – AFM’
Article Number 807
Number of page(s) 9
Published online 09 July 2020
  1. G.W. Swift, Thermoacoustics: A unifying perspective for some engines and refrigerators, Springer, New York, 2002 [Google Scholar]
  2. W.P. Arnott, H.E. Bass, R. Raspet, General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections, J. Acoust. Soc. Am. 90, 3228–3237 (1991) [Google Scholar]
  3. W.C Ward, J. Clark, G.W. Swift, Design Environment for Low-amplitude Thermoacoustic Energy Conversion (DeltaEC Version 6.2), Users Guide, 2008 [Google Scholar]
  4. M.W. Thompson, A.A. Atchley, M.J. Maccarone, Influences of a temperature gradient and fluid inertia on acoustic streaming in a standing wave, J. Acoust. Soc. Am. 117, 1839–1849 (2005) [CrossRef] [PubMed] [Google Scholar]
  5. I. Reyt, V. Daru, H. Bailliet, S. Moreau, J.C. Valière, D. Baltean-Carlès, C. Weisman, Fast acoustic streaming in standing waves: Generation of an additional outer streaming cell, J. Acoust. Soc. Am. 134, 1791–1801 (2013) [CrossRef] [PubMed] [Google Scholar]
  6. V. Daru, D. Baltean-Carlès, C. Weisman, P. Debesse, G. Gandikota, Two-dimensional numerical simulations of nonlinear acoustic streaming in standing waves, Wave Motion 50, 955–963 (2013) [Google Scholar]
  7. D.A. Nield, A. Bejan, Convection in Porous Media, Springer and Business Media, New York, 2006 [Google Scholar]
  8. D. Gobin, B. Goyeau, Natural convection in partially porous media: a brief overview, Int. J. Num. Meth. Heat Fluid Flow 18, 465–490 (2008) [CrossRef] [Google Scholar]
  9. C. Weisman, D. Baltean-Carlès, P. Duthil, P. Le Quéré, Natural convection in a stack of horizontal plates in a differentially heated cavity, in: S. Brynjolfsson, O.P. Palsson, J. H. Kim (Eds.), Proceedings of the 19th International Symposium on Transport Phenomena (ISTP-19), University of Iceland Faculty of Industrial Engineering, Mechanical Engineering and Computer Science Reykjavik, Island, 2008 [Google Scholar]
  10. E. Saint Ellier, Y. Bailly, L. Girardot, D. Ramel, P. Nika, Temperature gradient effects on acoustic and streaming velocities in standing acoustic waves resonator, Exp. Thermal Fluid Sci. 66, 1–6 (2015) [CrossRef] [Google Scholar]
  11. I. Ramadan, H. Bailliet, J.-C. Valière, Experimental investigation of the influence of natural convection and end-effects on Rayleigh streaming in a thermoacoustic engine, J. Acoust. Soc. Am. 143, 361–372 (2018) [CrossRef] [PubMed] [Google Scholar]
  12. S.H. Tasnim, Porous Media Thermoacoustic Stacks: Measurements and Models. Thesis, University of Waterloo, Ontario, Canada, 2011 [Google Scholar]
  13. D.W. Peaceman, H.H. Rachford, The numerical solution of parabolic and eliptic differential equations, J. Soc. Ind. Appl. Math. 3, 28–41 (1955) [CrossRef] [Google Scholar]
  14. K. Goda, A multistep technique with implicit difference schemes for calculating two or three- dimensional cavity flows, J. Comput. Phys. 30, 76–95 (1979) [Google Scholar]
  15. J L. Guermond, P.D. Minev, J. Shen, An overview of projection methods for incompressible flows. Comp. Meth. Appl. Mech. Eng. 195, 6011–6045 (2006) [CrossRef] [MathSciNet] [Google Scholar]
  16. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edn., Society for Industrial and Applied Mathematics, Philadelphia, 2003 [Google Scholar]
  17. D.R. Chenoweth, S. Paolucci, Natural convection in an enclosed vertical air layer with large horizontal temperature differences, J. Fluid Mech. 169, 173–210 (1986) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.