Free Access
Mechanics & Industry
Volume 21, Number 1, 2020
Article Number 112
Number of page(s) 12
Published online 24 January 2020
  1. S. Kalpakjian, S.R. Schmid, C.-W. Kok, Manufacturing Processes for Engineering Materials, Pearson, Prentice Hall, 2008 [Google Scholar]
  2. N.H. Kacem, N. Haddar, R. Elleuch, Failure analysis of an automotive shock absorber cup during manufacturing process, Mech. Ind. 17, 604 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  3. R. Boissiere, P. Vacher, J. Blandin, Scale factor and punch shape effects on the expansion capacities of an aluminum alloy during deep-drawing operations, Mech. Ind. 15, 159–166 (2014) [CrossRef] [Google Scholar]
  4. T. Naka, F. Yoshida, Deep drawability of type 5083 aluminium-magnesium alloy sheet under various conditions of temperature and forming speed, J. Mater. Process. Technol. 89, 19–23 (1999) [CrossRef] [Google Scholar]
  5. Y. Moon, Y. Kang, J. Park, S. Gong, Tool temperature control to increase the deep drawability of aluminum 1050 sheet, Int. J. Mach. Tools Manuf. 41, 1283–1294 (2001) [CrossRef] [Google Scholar]
  6. T. Naka, G. Torikai, R. Hino, F. Yoshida, The effects of temperature and forming speed on the forming limit diagram for type 5083 aluminum-magnesium alloy sheet, J. Mater. Process. Technol. 113, 648–653 (2001) [CrossRef] [Google Scholar]
  7. H. Takuda, K. Mori, I. Masuda, Y. Abe, M. Matsuo, Finite element simulation of warm deep drawing of aluminium alloy sheet when accounting for heat conduction, J. Mater. Process. Technol. 120, 412–418 (2002) [CrossRef] [Google Scholar]
  8. H. Wang, Y.-B. Luo, P. Friedman, M.-H. Chen, L. Gao, Warm forming behavior of high strength aluminum alloy AA7075, Trans. Nonferrous Met. Soc. China 22, 1–7 (2012) [CrossRef] [Google Scholar]
  9. X. Chu, L. Leotoing, D. Guines, E. Ragneau, Temperature and strain rate influence on AA5086 Forming Limit Curves: experimental results and discussion on the validity of the M-K model, Int. J. Mech. Sci. 78, 27–34 (2014) [CrossRef] [Google Scholar]
  10. M. Ghosh, A. Miroux, R. Werkhoven, P. Bolt, L. Kestens, Warm deep-drawing and post drawing analysis of two Al-Mg-Si alloys, J. Mater.Process. Technol. 214, 756–766 (2014) [CrossRef] [Google Scholar]
  11. H. Laurent, J. Coër, P. Manach, M. Oliveira, L. Menezes, Experimental and numerical studies on the warm deep drawing of an Al-Mg alloy, Int. J. Mech. Sci. (2015) [Google Scholar]
  12. M.H. Cetin, A. Ugur, O. Yigit, H. Gokkaya, E. Arcaklioglu, Development of forming temperature curves for warm deep drawing process under non-isothermal conditions, Arab. J. Sci. Eng. 40, 2763–2784 (2015) [CrossRef] [Google Scholar]
  13. J. Noder, S. DiCecco, C. Butcher, M. Worswick, Finite element simulation of non-isothermal warm forming of high-strength aluminum alloy sheet, AIP Conf. Proc. 1, 080017 (2017) [Google Scholar]
  14. J. Noder, A. Abedini, T. Rahmaan, S. DiCecco, C. Butcher, M. Worswick, An Experimental and Numerical Investigation of Non-isothermal Cup Drawing of a 7XXX-T76 Aluminum Alloy Sheet, IOP Conf. Ser. Mater. Sci. Eng. 1, 012019 (2018) [Google Scholar]
  15. T. Pepelnjak, E. Kayhan, B. Kaftanoglu, Analysis of non-isothermal warm deep drawing of dual-phase DP600 steel, Int. J. Mater. Form. 1–18 (2018) [Google Scholar]
  16. S. Kurukuri, A.H. van den Boogaard, M. Ghosh, A. Miroux, Thermo‐mechanical Forming of Al‐Mg‐Si Alloys: Modeling and Experiments, AIP Conf. Proc. 1, 810–817 (2010) [Google Scholar]
  17. D.G. Tari, M. Worswick, S. Winkler, Experimental studies of deep drawing of AZ31B magnesium alloy sheet under various thermal conditions, J. Mater. Process. Technol. 213, 1337–1347 (2013) [CrossRef] [Google Scholar]
  18. A. Barimani Varandi, S. Jamal Hosseinipour, Investigation of process parameters in production of cylindrical parts by gradient warm deep drawing, Modares Mech. Eng. 14 (2015) [Google Scholar]
  19. W.F. Hosford, R.M. Caddell, Metal Forming: Mechanics and Metallurgy, Cambridge University Press, Cambridge, 2011 [CrossRef] [Google Scholar]
  20. L.D. Hefti, Commercial airplane applications of superplastically formed AA5083 aluminum sheet, J. Mater. Eng. Perform. 16, 136–141 (2007) [Google Scholar]
  21. S. Kaya, Nonisothermal warm deep drawing of SS304: FE modeling and experiments using servo press, Int. J. Adv. Manuf. Technol. 83, 1047–1056 (2016) [Google Scholar]
  22. M. Steffensen, J. Danckert, Finite Element Simulation Of Magnesium AZ31 Alloy Sheet In Warm Hydroforming, AIP Conf. Proc. 1, 551–556 (2007) [Google Scholar]
  23. H. Takuda, K. Mori, T. Masachika, E. Yamazaki, Y. Watanabe, Finite element analysis of the formability of an austenitic stainless steel sheet in warm deep drawing, J. Mater. Process. Technol. 143, 242–248 (2003) [CrossRef] [Google Scholar]
  24. K. Shinagawa, K.-I. Mori, K. Osakada, Finite element simulation of deep drawing of stainless steel sheet with deformation-induced transformation, J. Mater. Process. Technol. 27, 301–310 (1991) [CrossRef] [Google Scholar]
  25. G. Palumbo, L. Tricarico, Numerical and experimental investigations on the warm deep drawing process of circular aluminum alloy specimens, J. Mater. Process. Technol. 184, 115–123 (2007) [CrossRef] [Google Scholar]
  26. Y. Ding, K. Gao, S. Guo, S. Wen, H. Huang, X. Wu, Z. Nie, D. Zhou, The recrystallization behavior of Al-6Mg-0.4 Mn-0.15 Zr-xSc (x= 0.04–0.10 wt%) alloys, Mater. Charact. 147, 262–270 (2019) [Google Scholar]
  27. S. Hosseinipour, An investigation into hot deformation of aluminum alloy 5083, Mater. Des. 30, 319–322 (2009) [Google Scholar]
  28. C.R. Alavala, High temperature and high strain rate superplastic deep drawing process for AA2618 alloy cylindrical cups, Int. J. Sci.Eng. Appl. Sci. 2, 35–41 (2016) [Google Scholar]
  29. M. Türköz, D. Acar, M. Dilmeç, H.S. Halkaci, Investigation on the optimal geometrical parameters for cylindrical cups in warm hydromechanical deep drawing process, Mechanical and Aerospace Engineering (ICMAE), 2017 8th International Conference on. IEEE, 2017 155–159 [Google Scholar]
  30. H. Laurent, J. Coër, P. Manach, M. Oliveira, L. Menezes, Experimental and numerical studies on the warm deep drawing of an Al-Mg alloy, Int. J. Mech. Sci. 93, 59–72 (2015) [CrossRef] [Google Scholar]
  31. W. Hui, Y.-b. Luo, P. Friedman, M.-h. Chen, G. Lin, Warm forming behavior of high strength aluminum alloy AA7075, Trans. Nonferrous Met. Soc. China 22, 1–7 (2012) [CrossRef] [Google Scholar]
  32. H.S. Kim, A combined FEA and design of experiments approach for the design and analysis of warm forming of aluminum sheet alloys, Int. J. Adv. Manuf. Technol. 51, 1–14 (2010) [Google Scholar]
  33. G. Ambrogio, L. Filice, G. Palumbo, S. Pinto, Prediction of formability extension in deep drawing when superimposing a thermal gradient, J. Mater. Process. Technol. 162, 454–460 (2005) [CrossRef] [Google Scholar]
  34. E. Sato, H. Masuda, Y. Sugino, S. Ukai, Local Accommodation Processes of Superplastic Grain Boundary Sliding: Their Direct Observation in Two-Dimensional Grain Boundary Sliding, Defect Diffus. Forum 385, 155–160 (2018) [CrossRef] [Google Scholar]
  35. K.A. Babu, V.S. Sarma, C. Athreya, K. Padmanabhan, Experimental verification of grain boundary-sliding controlled steady state superplastic flow in both continually and statically recrystallizing Al alloys, Mater. Sci. Eng. 657, 185–196 (2016) [CrossRef] [Google Scholar]
  36. G. Palumbo, D. Sorgente, L. Tricarico, S. Zhang, W. Zheng, Numerical and experimental investigations on the effect of the heating strategy and the punch speed on the warm deep drawing of magnesium alloy AZ31, J. Mater. Process. Technol. 191, 342–346 (2007) [CrossRef] [Google Scholar]
  37. S. Yoshihara, H. Yamamoto, K. Manabe, H. Nishimura, Formability enhancement in magnesium alloy deep drawing by local heating and cooling technique, J. Mater. Process. Technol. 143, 612–615 (2003) [CrossRef] [Google Scholar]
  38. H. Tanaka, Y. Nagai, Y. Oguri, H. Yoshida, Mechanical properties of 5083 aluminum alloy sheets produced by isothermal rolling, Mater. Transac. 48, 2008–2013 (2007) [CrossRef] [Google Scholar]
  39. M. Janbakhsh, M. Riahi, F. Djavanroodi, Anisotropy Induced Biaxial Stress-Strain Relationships in Aluminum Alloys, Int. J. Adv. Des. Manuf. Technol. 5, 1 (2012) [Google Scholar]
  40. M. Tajally, E. Emadoddin, Mechanical and anisotropic behaviors of 7075 aluminum alloy sheets, Mater. Des. 32, 1594–1599 (2011) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.