Free Access
Issue
Mechanics & Industry
Volume 21, Number 2, 2020
Article Number 208
Number of page(s) 9
DOI https://doi.org/10.1051/meca/2020006
Published online 25 February 2020
  1. G.V. Candler, P.K. Subbareddy, I. Nompelis, Decoupled implicit method for aerothermodynamics and reacting flows, AIAA J. 51, 1245–1254 (2013) [Google Scholar]
  2. A. Abdelaziz, Modélisation d’une écoulement hypersonique de CO en déséquilibre physico-chimiques et radiatif derrière une onde de choc, Thèse Doctorat de L'université de Provence (Aix-Marseille I), 2002 [Google Scholar]
  3. G. Tchuen, D.E. Zeitoun, Effects of chemistry in nonequilibrium hypersonic flow around blunt bodies, J. Thermophys. Heat Transf. 23, 433–442 (2009) [CrossRef] [Google Scholar]
  4. K. Koffi-Kpante, Etude des phénomènes de déséquilibre thermochimique dans la couche de choc radiative de l’atmosphère simulée de TITAN, Thèse Doctorat de L‘université de Provence (Aix-Marseille I), 1996 [Google Scholar]
  5. R.C. Millikan, D.R. White, Systematics of vibrational relaxation, J. Chem. Phys. 39, 3209–3213 (1963) [Google Scholar]
  6. T. Soubrié, Prise en compte de l’ionisation et du rayonnement dans la modélisation des écoulements de rentrée terrestre et martienne, Thèse Doctorat de l'Ecole nationale supérieure de l'aéronautique et de l'espace, 2006 [Google Scholar]
  7. V. Casseau, T.J. Scanlon, R.E. Brown, Development of a two-temperature open-source CFD model for hypersonic reacting flows, AIAA Paper 2015-3637, 2015 [Google Scholar]
  8. C. Park, On convergence of computation of reacting flows, AIAA 1985-0247, 1985 [Google Scholar]
  9. V. Casseau, D.E. Espinoza, T.J. Scanlon, R.E. Brown, A two-temperature open-source CFD model for hypersonic reacting flows, part two: multi-dimensional analysis, Aerospace 3, 45 (2016) [CrossRef] [Google Scholar]
  10. J.M. Lamet, Transferts radiatifs dans les écoulements hypersoniques de rentrée atmosphérique terrestre, Thèse Doctorat de L'Ecole Centrale Paris, 2009 [Google Scholar]
  11. T. Thierry, et al. Coarse-grain model for internal energy excitation and dissociation of molecular nitrogen, Chem. Phys. 398, 90–95 (2012) [Google Scholar]
  12. C. Park, Assessment of two- temperature kinetic model for ionizing air, NASA Ames Research Center, Moffett Field, California, July 1989 [Google Scholar]
  13. T.E. Magin, M. Panesi, A. Bourdon, R.L. Jaffe, D.W. Schwenke, Coarse-grain model for internal energy excitationand dissociation of molecular nitrogen, Chem. Phys. 398, 90–95 (2012) [Google Scholar]
  14. J.D. Anderson Jr., Hypersonic and high-temperature gas dynamics, AIAA Education series, 2006 [Google Scholar]
  15. R.N. Cox, L.F. Crabtree, Elements of hypersonic aerodynamics, The English Universities Press LTD, London, 1973 [Google Scholar]
  16. G. Candler, The computation of weakly ionized hypersonic flow in thermo-chemical nonequilibrium, Dissertation, Stanford University, June 1988 [Google Scholar]
  17. R. Allouche, R. Haoui. R. Renane, Numerical simulation of reactive flow in non-equilibrium behind a strong shock wave during re-entry into earth's atmosphere, Mech. Ind. 15, 81–87 (2014) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.