Open Access
Issue
Mechanics & Industry
Volume 21, Number 2, 2020
Article Number 210
Number of page(s) 10
DOI https://doi.org/10.1051/meca/2020003
Published online 03 March 2020
  1. W. He, S. Zhang, S.S. Ge, Adaptive control of a flexible crane system with the boundary output constraint, IEEE Trans. Ind. Electron. 61, 4126–4133 (2014) [Google Scholar]
  2. P. Romanowicz, Numerical assessment of fatigue load capacity of cylindrical crane wheel using multiaxial high-cycle fatigue criteria. Arch. Appl. Mech. 87, 1–20 (2017) [CrossRef] [Google Scholar]
  3. A. Zankl, E.L. Duncan, et al. Vibration test and analysis system for construction machinery based on labwindows/CVI, Metrol. Meas. Tech. 90, 494–501 (2008) [Google Scholar]
  4. L.F. Stikeleather, Evaluating the vibration and shock isolation qualities of operator seats for construction machinery, Synth. Commun. 39, 1929–1935 (1973) [Google Scholar]
  5. J.E. Johnson, D.E. Wasserman, Ergonomics and vibration in powered hand tools used in meat processing, J. Low Freq. Noise Vib. Active Control 19, 1–15 (2000) [CrossRef] [Google Scholar]
  6. J. Wu, Q. Wu, L. Ma, et al. Parameter vibration and dynamic stability of the printing paper web with variable speed, J. Low Fr eq. Noise Vib. Active Control 29, 281–291 (2010) [CrossRef] [Google Scholar]
  7. S. Kotake, K. Yagi, T. Takigami, Application of sampled-data control by using vibration manipulation function to suppress residual vibration of travelling crane, Mech. Eng. J. 2, 15-00033–15-00033 (2015) [CrossRef] [Google Scholar]
  8. A. Arena, W. Lacarbonara, A. Casalotti, et al., Payload oscillations control in harbor cranes via semi-active vibration absorbers: modeling, simulations and experimental results, Procedia Eng. 199, 501–509 (2017) [Google Scholar]
  9. D. Kang, W.S. Lee, et al., Characteristics of construction machinery noise and vibration, Trans. Korean Soc. Noise Vib. Eng. 15, 645–651 (2005) [CrossRef] [Google Scholar]
  10. C.W. Lim, L. Cheng, Y. Jinlin, Free torsional vibration of nanotubes based on nonlocal stress theory, J. Sound Vib. 331, 2798–2808 (2012) [Google Scholar]
  11. A.M. Najafov, A.H. Sofiyev, N. Kuruoglu, Torsional vibration and stability of functionally graded orthotropic cylindrical shells on elastic foundations, Meccanica 48, 829–840 (2013) [Google Scholar]
  12. A. Alexander, A. Vacca, D. Cristofori, Active vibration damping in hydraulic construction machinery, Procedia Eng. 176, 514–528 (2017) [Google Scholar]
  13. J. Chen, R.B. Randall, B. Peeters, Advanced diagnostic system for piston slap faults in IC engines, based on the non-stationary characteristics of the vibration signals, Mech. Syst. Signal Process. 75, 434–454 (2016) [Google Scholar]
  14. C. Peeters, P. Guillaume, J. Helsen, A comparison of cepstral editing methods as signal pre-processing techniques for vibration-based bearing fault detection., Mech. Syst. Signal Process. 91, 354–381 (2017) [Google Scholar]
  15. D. Remond, Practical performances of high-speed measurement of gear transmission error or torsional vibrations with optical encoders, Meas. Sci. Technol. 9, 347–353 (1998) [Google Scholar]
  16. T.W. Spaetgens, B.C. Vancouver, Holzer method for forced-damped torsional vibrations, J. Appl. Mech. Trans. ASME 17, 59–63 (1950) [Google Scholar]
  17. H.E. Fettis, Vibration modes of a two-beam system by the Holzer method, J. Aerosp. Sci. 29, 15–20 (2014) [Google Scholar]
  18. B.A.J. Mustafa, A. Roszaidi, An energy method for free vibration analysis of stiffened circular cylindrical shells, Comput. Struct. 32, 355–363 (1989) [Google Scholar]
  19. T. Hermann, M. Witalis, Assessment of the effectiveness of anti-vibration gloves. A comparison of the conventional and energy method. analysis and interpretation of results-Part Two, Vib. Phys. Syst. 28, 1–9 (2017) [Google Scholar]
  20. Z.-g. Song, Y. Zhang, Analysis of the dynamic amplification factor of latetral structural vibration induced by crowd-bridge interaction, J. Vib. Shock 34, 19–23 (2015) [Google Scholar]
  21. R. Feldhaus, H. Bach, System considerations concerning alternative torsion vibration dampers in automobile drive trains, Atz Worldwide 104, 12–16 (2002) [CrossRef] [Google Scholar]
  22. W. Homik, Diagnostics, maintenance and regeneration of torsional vibration dampers for crankshafts of ship diesel engines, Pol. Marit. Res. 17, 62–68 (2010) [Google Scholar]
  23. N. Xiao, R. Zhou, X. Xu, Vibration of diesel-electric hybrid propulsion system with nonlinear component, J. Vib. Control 24, 5353–5365 (2018) [Google Scholar]
  24. J.-J. Wu, Finite element analysis and vibration testing of a three-dimensional crane structure, Measurement 39, 740–749 (2006) [CrossRef] [Google Scholar]
  25. A. Lazarus, B. Prabel, D. Combescure, A 3D finite element model for the vibration analysis of asymmetric rotating machines, J. Sound Vib. 329, 3780–3797 (2017) [Google Scholar]
  26. S.H. Kia, H. Hena, A comparative study of acoustic vibration and stator current signatures for gear tooth fault diagnosis, IEEE 2012, pp. 1514–1519 [Google Scholar]
  27. J. Rajnauth, Reduce torsional vibration and improve drilling operations, Int. J. Appl. Sci. Technol. 2, 109–123 (2012) [Google Scholar]
  28. E. Kreuzer, M. Steidl, Controlling Torsional Vibrations of Drill Strings Via Decomposition of Traveling Waves, Springer-Verlag, Berlin, 2011, pp. 515–531 [Google Scholar]
  29. P.E. Troy Feese, Gudielines for preventing torsional vibration problems in reciprocating machinery, Gas Machinery Conference 2002, pp. 1–48 [Google Scholar]
  30. Z.Q. Zhu, J.H. Leong, Aanalysis and mitigation of torsional vibration of PM brushless DC drives with direct torque controller, IEEE, 2011 pp. 1502–1509 [Google Scholar]
  31. S. Seidlitz, R.J. Kuether, Comparison of noise floors of various torsional vibration sensors, The Society for Experimental Mechanics Springer, New York, 2012, pp. 153–168 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.