Open Access
Mechanics & Industry
Volume 21, Number 3, 2020
Article Number 309
Number of page(s) 10
Published online 27 April 2020
  1. M. Rahmat, P. Hubert, Two-phase simulations of micro heat pipes, Comput. Fluids 39 , 451–460 (2010) [Google Scholar]
  2. G. Mohiuddin Mala, D. Li, J.D. Dale, Heat transfer and fluid flow in microchannels, Int. J. Heat Mass Transfer 40 , 3079–3088 (1997) [CrossRef] [Google Scholar]
  3. R.W. Knight, D.J. Hall, J.S. Goodling, R.C. Jaeger, Heat sink optimization with application to microchannels, IEEE Trans. Compon. Hybrids Manufact. Technol. 15 , 832–842 (1992) [CrossRef] [Google Scholar]
  4. M. Groll, M. Schneider, V. Sartre, M. Chaker Zaghdoudi, M. Lallemand, Thermal control of electronic equipment by heat pipes, Rev. Génér. Therm. 37 , 323–352 (1998) [CrossRef] [Google Scholar]
  5. M.L. Berre, G. Pandraud, P. Morfouli, M. Lallemand, The performance of micro heat pipes measured by integrated sensors, J. Micromech. Microeng. 16 , 1047–1050 (2006) [Google Scholar]
  6. M. Fallah Abbasi, H. Shokouhmand, Experimental investigation on effect of EDL on heat transfer of micro heat pipe, Microgr. Sci. Technol. 31 , 317–326 (2019) [CrossRef] [Google Scholar]
  7. Y. Lei, Z. Chen, J. Shi, Analysis of condensation heat transfer performance in curved triangle microchannels based on the volume of fluid method, Microgr. Sci. Technol. 29 , 433–443 (2017) [CrossRef] [Google Scholar]
  8. K. Fukagata, N. Kasagi, P. Ua-arayaporn, T. Himeno, Numerical simulation of gas-liquid two-phase flow and convective heat transfer in a micro tube, Int. J. Heat Fluid Flow 28 , 72–82 (2007) [Google Scholar]
  9. G. Černe, S. Petelin, I. Tiselj, Coupling of the interface tracking and the two-fluid models for the simulation of incompressible two-phase flow, J. Comput. Phys. 171 , 776–804 (2001) [Google Scholar]
  10. E. Berberović, N.P. van Hinsberg, S. Jakirlić, I.V. Roisman, C. Tropea, Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution, Phys. Rev. E 79 , 036306 (2009) [Google Scholar]
  11. P. Zhang, H.H. Qiu, Investigation of the patterned surface modification on 3D vortex flow generation in a micropipe, J. Micromech. Microeng. 18 , 115030 (2008) [Google Scholar]
  12. L. Ren, D. Li, W. Qu, Electro-viscous effects on liquid flow in microchannels, J. Colloid Interface Sci. 233 , 12–22 (2001) [Google Scholar]
  13. L. Gong, J.-K. Wu, L. Wang, K. Chao, Periodical streaming potential and electro-viscous effects in microchannel flow, Appl. Math. Mech. 29 , 715–724 (2008) [CrossRef] [Google Scholar]
  14. H. Nakajima, Mass Transfer, Open access peer-reviewed Edited Volume (November 4th 2011) (2011) [Google Scholar]
  15. H. Shokouhmand, A.A.R. Bahrami, Study of the effects of electrokinetic field on heat transfer through rectangular microchannels, J. Fac. Eng. 39, 773–784 (2006) [Google Scholar]
  16. B.Q.J.A.W. Qian, MEMS-Based Micro-heat Pipes (June 15th 2016) [Google Scholar]
  17. P. Krata, The impact of sloshing liquids on ship stability for various dimensions of partly filled tanks, TransNav, Int. J. Mar. Navigat. Saf. Sea Transp. 7 , 481–489 (2013) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.