Free Access
Issue
Mechanics & Industry
Volume 21, Number 3, 2020
Article Number 308
Number of page(s) 20
DOI https://doi.org/10.1051/meca/2020016
Published online 10 April 2020
  1. K.K. Agrawal, R. Misra, T. Yadav, G.D. Agrawal, D.J. Jamuwa, Experimental study to investigate the effect of water impregnation on thermal performance of earth air tunnel heat exchanger for summer cooling in hot and arid climate, Renew. Energy 120 , 255–265 (2018) [Google Scholar]
  2. N.A.S. Elminshawy, F.R. Siddiqui, Q.U. Farooq, M.F. Addas, Experimental investigation on the performance of earth-air pipe heat exchanger for different soil compaction levels, Appl. Therm. Eng. 124 , 1319–1327 (2017) [Google Scholar]
  3. S.K. Soni, M. Pandey, V.N. Bartaria, Experimental analysis of a direct expansion ground coupled heat exchange system for space cooling requirements, Energy Build. 119 , 85–92 (2016) [Google Scholar]
  4. D. Yang, J. Zhang, Analysis and experiments on the periodically fluctuating air temperature in a building with earth air tube ventilation, Build. Environ. 85 , 29–39 (2015) [Google Scholar]
  5. H. Breesch, A. Bossaer, A. Janssens, Passive cooling in a low-energy office building, Solar Energy 79 , 682–696 (2005) [CrossRef] [Google Scholar]
  6. F. Fazlikhani, H. Goudarzi, E. Solgi, Numerical analysis of the efficiency of earth to air heat exchanger system in cold and hot-arid climates, Energy Convers. Manag. 148 , 78–98 (2017) [Google Scholar]
  7. J. Pfafferott, Evaluation of earth-to-air heat exchangers with standardized method to calculate energy efficiency, Energy Build. 35 , 971–983 (2003) [Google Scholar]
  8. K. Voss, S. Herkel, J. Pfafferott, G. Lonnart, A. Wangner, Energy efficient office buildings with passive-result and experiences from a research and demonstration program, Solar Energy 81 , 424–434 (2007) [CrossRef] [Google Scholar]
  9. D. Yang, Y. Gou, J. Zhang, Evaluation of thermal performance of an earth to-air heat exchanger (EAHE) in harmonic thermal environment, Energy Convers. Manag. 109 , 184–194 (2016) [Google Scholar]
  10. C.E. Mehdid, A. Benchabane, A. Rouag, N. Moummi, M.A. Melhegueg, A. Moummi, M.L. Benabdi, A. Brima, Thermal design of Earth-to-air heat exchanger. Part II a new transientsemi-analytical model and experimental validation for estimating air temperature, J. Cleaner Prod. 198 , 1536–1544 (2018) [CrossRef] [Google Scholar]
  11. L. Amanowicz, J. Wojtkowiak, Validation of CFD model for simulation of multi-pipe earth-to-air heat exchanger (EAHEs) flow performance, Thermal Sci. Eng. Prog. 5 , 44–49 (2018) [CrossRef] [Google Scholar]
  12. K.K. Agrawal, M. Bhardwaj, R. Misra, G.D. Agrawal, V. Bansal, Optimization of operating parameters of earth air tunnel heat exchangers for space cooling: Taguchi method approach, Geotherm. Energy 6 , 1–17 (2018) [CrossRef] [Google Scholar]
  13. S.F. Ahmed, M.T.O. Amanullah, M.M.K. Khan, M.G. Rasul, N.M.S. Hassan, Parametric study on thermal performance of horizontal earth pipe cooling system in summer, Energy Convers. Manag. 114 , 324–337 (2010) [Google Scholar]
  14. T.S. Bisoniya, Design of an earth-air heat exchanger system, Geotherm. Energy 3 , 1–10 (2015) [CrossRef] [Google Scholar]
  15. T.S. Bisoniya, A. Kumar, P. Barender, Energy metrics of earth-air heat exchanger system for hot and dry climatic condition of India, Energy Build. 86 , 214–221 (2015) [Google Scholar]
  16. M. Benhammou, B. Draoui, M. Hamouda, Improvement of the summer cooling induced by an earth-to-air heat exchanger integrated in a residential building under hot and arid climate, Appl. Energy 208 , 428–445 (2017) [Google Scholar]
  17. R.S. Brum, J.V.A. Ramalho, M.K. Rodrigues, L.A.O. Rocha, I. LiéA, E.D. Dos Santos, Design evaluation of earth-air heat exchangers with multiple ducts, Renew. Energy https://doi.org/10.1016/j.renene.2018.09.063 [Google Scholar]
  18. E. Estrada, M. Labat, S. Lorente, L.A.O. Rocha, The impact of latent heat exchanges on the design of earth air heat exchangers, Appl. Therm. Eng. 129 , 306–317 (2018) [Google Scholar]
  19. N. Jamshidia, A. Mosaffab, Investigating the effects of geometric parameters on finned conical helical geothermal heat exchanger and its energy extraction capability, Geothermics 76 , 177–189 (2018) [Google Scholar]
  20. N. Rosa, P. Santos, J.J. Costa, H. Gervásio, Modelling and performance analysis of an earth-to-air heat exchanger in a pilot installation, J. Build. Phys. 00 , 1–29 (2018) [Google Scholar]
  21. F. Taşdelen, I. Dağtekin, A numerical investigation of thermal performance of earth–air heat exchanger, Arab. J. Sci. Eng. 44 , 1151–1163 (2019) [CrossRef] [Google Scholar]
  22. X. Wang, B.S. Bjerg, G. Zhang, Design-oriented modelling on cooling performance of the earth-air heat exchanger for livestock housing, Comput. Electr. Agric. 152 , 51–58 (2018) [CrossRef] [Google Scholar]
  23. J. Xamán, I. Hernández-Pérez, J. Arce, G. Álvarez, L. Ramírez-Davíla, F. Noh-Pat, Numerical study of earth to air heat exchanger: the effect of thermal insulation, Energy Build 85 , 356–361 (2014) [Google Scholar]
  24. J. Xamán, I. Hernández-López, R. Alvarado-Juárez, I. Hernández-Pérez, G. Álvarez, Y. Chávez, Pseudo transient numerical study of the earth to air heat exchanger for different climates for México, Energy Build. 99 , 273–283 (2015) [Google Scholar]
  25. M. Cuny, J. Lin, M. Siroux, V. Magnenet, C. Fond, Influence of coating soil types on the energy of earth-air heat exchanger, Energy Build. 158 , 1000–1012 (2018) [Google Scholar]
  26. A. Mathur, A. Srivastava, G.D. Agrawal, S. Mathu, J. Mathur, CFD analysis of EATHE system under transient conditions for intermittent operation, Energy Build. 87 , 37–44 (2015) [Google Scholar]
  27. A. Mathur, A.K. Surana, S. Mathur, Numerical investigation of the performance and soil temperature recovery of an EATHE system under intermittent operations, Renew. Energy 95 , 510–521 (2016) [Google Scholar]
  28. R. Misra, S. Jakhar, K.K. Agrawal, S. Sharma, D.K. Jamuwa, M.S. Soni, G.D. Agrawal, Field investigations to determine the thermal performance of earth air tunnel heat exchanger with dry and wet soil: energy and exergetic analysis, Energy Build. 171 , 107–115 (2018) [Google Scholar]
  29. F. Niu, Y. Yu, D. Yu, H. Li, Investigation on soil thermal saturation and recovery of an earth to air heat exchanger under different operation strategies, Appl. Thermal Eng. 77 , 90–100 (2015) [CrossRef] [Google Scholar]
  30. L. Ramirez-Davila, J. Xamán, J. Arce, G. Alvarez, I. Hernández-Pérez, Numerical study of earth-to-air heat exchanger for three different climates, Energy Build. 76 , 238–248 (2015) [Google Scholar]
  31. M.K. Rodrigues, F.S. Coswig, K.R. Camargo, L.A. Isoldi, R.S. Brum, J.V.A. Ramalho, J. Vaz, L.A.O. Rocha, E.D. dos Santos, Thermal performance simulations of earth-air heat exchangers for different soils of a coastal city using in-situ data, Sustain. Energy Technol. Assess. 30 , 224–229 (2018) [Google Scholar]
  32. M. Rodríguez-Vázquez, I. Hernández-Pérez, J. Xamán, Y. Chávez, F. Noh-Pat, Computational fluid dynamics for thermal evaluation of earth-to-air heat exchanger for different climates of Mexico, Techniques and Thermo-Mechanics Applications CFD in Driss, et al. (1st) (2018) 33–51 [CrossRef] [Google Scholar]
  33. A. Rouag, A. Benchabane, C.E. Mehdid, Thermal design of earth-to-air heat exchanger. Part I A new transient semianalytical model for determining soil temperature, J. Clean. Prod. 182 , 538–544 (2018) [Google Scholar]
  34. R. Hassanzadeh, M. Darvishyadegari, S. Arman, A new idea for improving the horizontal straight ground source heat exchangers performance, Sustain. Energy Technolog. Assess. 25 , 138–145 (2018) [CrossRef] [Google Scholar]
  35. C.Y. Hsu, Y.C. Chiang, Z.J. Chien, S.L. Chen, Investigation on performance of building-integrated earth-air heat exchanger, Energy Build. 169 , 444–452 (2018) [Google Scholar]
  36. M. Kaushal, P. Dhiman, S. Singh, H. Patel, Finite volume and response surface methodology based performance prediction and optimization of a hybrid earth to air tunnel heat exchanger, Energy Build. 104 , 25–35 (2015) [Google Scholar]
  37. M.K. Rodrigues, B.R. Nunes, L.A.O. Rocha, E.D. dos Santos, L.A. Isoldi, Simulação Numérica de Trocador de Calor Solo-Ar Constituído por Formas Geométricas Complexas, Cereus 10 , 12–25 (2018) [CrossRef] [Google Scholar]
  38. A. Mathur, Priyam, S. Mathur, G.D. Agracial, J. Mathur, Comparative study of straight and spiral earth air tunnel heat exchanger system operated in cooling and heating modes, Renew. Energy 108 , 474–487 (2017) [Google Scholar]
  39. S. Selamat, A. Miyara, K. Kariya, Numerical study of horizontal heat exchangers for design optimization, Renew. Energy 95 , 561–573 (2016) [Google Scholar]
  40. H. Wei, D. Yang, Y. Guo, M. Chen, Coupling of earth-to-air heat exchangers and buoyancy for energy efficient ventilation of buildings considering dynamic thermal behavior and cooling/heating capacity, Energy 147 , 587–602 (2018) [CrossRef] [Google Scholar]
  41. D. Yang, Y. Guo, J. Zhang, Evaluation of the thermal performance of an earth-to-air heat exchanger (EAHE) in harmonic thermal environment, Energy Convers. Manag. 109 , 184–194 (2016) [Google Scholar]
  42. M.K. Ghosal, G.N. Tiwari, D.K. Das, K.P. Pandey, Modeling and comparative thermal performance of ground air collector and earth heat exchanger for heating of greenhouse, Energy Build. 37 , 613–621 (2005) [Google Scholar]
  43. V.M. Arcos Feria, Estudio experimental del desempeño térmico de un intercambiador de calor tierra aire en la ciudad de Chetumal, Quintana Roo. Master Thesis, Universidad de Quintana Roo, Quintana Roo, México, 2016 [Google Scholar]
  44. H.P. Díaz-Hernández, E.V. Macias-Melo, K.M. Aguilar-Castro, I. Hernández-Pérez, J. Xamán, J. Serrano-Arellano, L.M. López-Manrique, Experimental study of an earth to air heat exchanger (EAHE) for warm humid climatic conditions. Renew. Energy in press (2018) [Google Scholar]
  45. C. Gauthier, M. Lacroix, H. Bernier, Numerical simulation of soil heat exchanger-storage systems for greenhouses, Solar Energy 60 , 333–346 (1997) [CrossRef] [Google Scholar]
  46. G. Mihalakakou, M. Santamauris, J.O. Lewis, D.N. Asimakopoulos, On the application of the energy balance equation to predict ground temperature profiles, Solar Energy 60 , 181–190 (1997) [CrossRef] [Google Scholar]
  47. V. Badescu, Simple and accurate model for the ground heat exchanger of a passive house, Renew. Energy 32 , 845–855 (2007) [Google Scholar]
  48. S.V. Patankar, Numerical heat transfer and fluid flow, 1st ed., Hemisphere Series on Computational Methods in Mechanics and Thermal science, 1980 [Google Scholar]
  49. J. Van Doormaal, G. Raithby, Enhancements of the SIMPLE method for predicting incompressible fluid flow, Numer.Heat Transfer 8 , 147–163 (1984) [Google Scholar]
  50. J.M. House, C. Beckermann, T.F. Smith, Effect of a centered conducting body on natural convection heat transfer in an enclosure, Numer. Heat Transfer 18 , 213–225 (1990) [CrossRef] [Google Scholar]
  51. J.A. Díaz-Rodríguez, Los suelos lacustres de la ciudad de México. Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil 6 , 111–130 (2006) [Google Scholar]
  52. Instituto Nacional de Estadistica y Geografia, Prontuario de información geográfica municipal de los Estados Unidos Mexicanos . Mexico City. INEGI, 2009. https://www.inegi.org.mx [Google Scholar]
  53. CONAGUA, http://smn.cna.gob.mx/es/emas. México 2017 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.