Open Access
Mechanics & Industry
Volume 21, Number 4, 2020
Article Number 412
Number of page(s) 12
Published online 25 June 2020
  1. J. Marzbanrad, M. Mohammadi, S. Mostaani, Optimization of a passive vehicle suspension system for ride comfort enhancement with different speeds based on design of experiment method (DOE) method, J. Mech. Eng. Res. 5, 50–59 (2013) [CrossRef] [Google Scholar]
  2. M. Boreiry, S. Ebrahimi-Nejad, J. Marzbanrad, Sensitivity analysis of chaotic vibrations of a full vehicle model with magnetorheological damper, Chaos Solitons Fractals 127, 428–442 (2019) [Google Scholar]
  3. H. Nazemian, M. Masih-Tehrani, Development of an Optimized Game Controller for Energy Saving in a Novel Interconnected Air Suspension System, Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, In press (2020) [Google Scholar]
  4. H. Nazemian, M. Masih-Tehrani, Hybrid Fuzzy-PID Control Development for a Truck Air Suspension System, SAE International Journal of Commercial Vehicles, In press (2020) [Google Scholar]
  5. S.-T. Zhou, Y.-J. Chiu, I.H. Lin, The Parameters Optimizing Design of Double Suspension Arm Torsion Bar in the Electric Sight-Seeing Car by Random Vibration Analyzing Method, Shock Vibration 22, 1–9 (2017) [Google Scholar]
  6. M. Gohari, M. Tahmasebi, Active off-road seat suspension system using intelligent active force control, J. Low Frequency Noise Vibration Active Contr. 34, 475–489 (2015) [CrossRef] [Google Scholar]
  7. C. Wang, X. Zhang, K. Guo, J. Lv, Y. Yang, Hierarchical optimisation on scissor seat suspension characteristic and structure, Vehicle Sys. Dyn. 54, 1538–1553 (2016) [CrossRef] [Google Scholar]
  8. J. Tobolár, D. Baumgartner, Y. Hirano, T. BÛnte, M. Fleps-Dezasse, J. Brembeck, Model Based Design of a Split Carrier Wheel Suspension for Light-weight Vehicles. Paper presented at the 12th International Modelica Conference, Prague, Czech Republic, May 15–17 (2017) [Google Scholar]
  9. J. Marzbanrad, P. Poozesh, M. Damroodi, Improving vehicle ride comfort using an active and semi-active controller in a half-car model, J. Vibration Contr. 19, 1357–1377 (2012) [CrossRef] [Google Scholar]
  10. H. Chen, C. Long, C.-C .Yuan, H.-B Jiang, Non-linear modelling and control of semi-active suspensions with variable damping, Vehicle Sys. Dyn. 51, 1568–1587 (2013) [CrossRef] [Google Scholar]
  11. V. Ozbulur, An adaptive compensator for a vehicle suspension system, J. Vibration Contr. 21, 3090–3097 (2014) [CrossRef] [Google Scholar]
  12. S. Gad, H. Metered, A. Bassuiny, A.M. Abdel Ghany, Multi-objective genetic algorithm fractional-order PID controller for semi-active magnetorheologically damped seat suspension, J. Vibration Contr. 23, 1248–266 (2015) [CrossRef] [Google Scholar]
  13. S.G. Prassad, S. Aakash, K.M. Mohan, Simulation of a Control System for an Adaptive Suspension System for Passenger Vehicles, Simulation 1, 62788 (2017) [Google Scholar]
  14. H.A. Hamersma, P. Schalk Els, Improving the braking performance of a vehicle with ABS and a semi-active suspension system on a rough road, J. Terramech. 56, 91–101 (2014) [Google Scholar]
  15. P.-C Shi, Q. Zhao, S.-S. Peng, Modeling and Simulation of Linear Two-DOF Vehicle Handling Stability, ITM Web Conf. 1, 07007 (2017) [CrossRef] [Google Scholar]
  16. O. Maier, B. Györfi, J. Wrede, R. Kasper, Design and validation of a multi-body model of a front suspension bicycle and a passive rider for braking dynamics investigations, Multibody Sys. Dyn. 42, 19–45 (2017) [CrossRef] [Google Scholar]
  17. L. Xie, J. Li, X. Li, L. Huang, S. Cai, Damping-tunable energy-harvesting vehicle damper with multiple controlled generators: design, modeling and experiments, Mech. Sys. Signal Process 99, 859–872 (2018) [CrossRef] [Google Scholar]
  18. R. Jiang, D. Wang, Optimization of Suspension System of Self-Dumping Truck Using TOPSIS-based Taguchi Method Coupled with Entropy Measurement, SAE Technical Paper, 2016-2001-1385 (2016) [Google Scholar]
  19. L. Zhang, S. Zhang, W. Zhang, Multi-objective optimization design of in-wheel motors drive electric vehicle suspensions for improving handling stability. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233, 2232–2245 (2019) [CrossRef] [Google Scholar]
  20. R. Zhang, X. Wang, Parameter study and optimization of a half-vehicle suspension system model integrated with an arm-teeth regenerative shock absorber using Taguchi method, Mech. Sys. Signal Process. 126, 65–81 (2019) [CrossRef] [Google Scholar]
  21. G.G. Fossati, L.F.F. Miguel, W.J.P. Casas, Multi-objective optimization of the suspension system parameters of a full vehicle model, Optim. Eng. 20, 151–177 (2019) [CrossRef] [Google Scholar]
  22. Z. Su, F. Xu, L. Hua, H. Chen, K. Wu, S. Zhang, Design optimization of minivan MacPherson-strut suspension system based on weighting combination method and neighborhood cultivation genetic algorithm, J. Automobile Eng. 233, 650–660 (2019) [CrossRef] [Google Scholar]
  23. C.-L. Hwang, K. Yoon, Methods for Multiple Attribute Decision Making, Springer, Berlin, Heidelberg, 1981, pp 58­–191 [CrossRef] [Google Scholar]
  24. R. Jiang, D. Wang, Optimization of Vehicle Ride Comfort and Handling Stability Based on TOPSIS Method, SAE Technical Paper, 2015-200-1348 (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.