Open Access
Mechanics & Industry
Volume 21, Number 5, 2020
Article Number 505
Number of page(s) 10
Published online 05 August 2020
  1. J. Klassen, N. Friedrich, W. Fricke, T. Nitschke-Pagel, K. Dilger, Influence of residual stresses on fatigue strength of large-scale welded assembly joints, Weld. World 61, 361–374 (2017) [CrossRef] [Google Scholar]
  2. I. Vysotskiy, S. Malopheyev, S. Rahimi, S. Mironov, R. Kaibyshev, Unusual fatigue behavior of friction-stir welded Al–Mg–Si alloy, Mater. Sci. Eng. A 760, 277–276 (2019) [CrossRef] [Google Scholar]
  3. D. Wang, H. Zhang, B. Gong, C. Deng, Residual stress effects on fatigue behavior of welded T-joint: a finite fracture mechanics approach, Mater. Des. 91, 211–217 (2016) [Google Scholar]
  4. Y. Javadi, K. Azari, S.M. Ghalehbandi, M.J. Roy, Comparison between using longitudinal and shear waves in ultrasonic stress measurement to investigate the effect of post-weld heat-treatment on welding residual stresses, Res. Nondestruct. Eval. 28, 101–122 (2015) [CrossRef] [Google Scholar]
  5. Z. Zhang, P. Ge, G.Z. Zhao, Numerical studies of post weld heat treatment on residual stresses in welded impeller, Int. J. Pres. Ves. Pip. 153, 1–14 (2017) [CrossRef] [Google Scholar]
  6. C. Bianchetti, D. Delbergue, P. Bocher, M. Lévesque, M. Brochu, Analytical fatigue life prediction of shot peened AA 7050-T7451, Int. J. Fatigue 118, 271–281 (2019) [Google Scholar]
  7. Y. Gao, Improvement of fatigue property in 7050-T7451 aluminum alloy by laser peening and shot peening, Mater. Sci. Eng. A 528, 3823–3828 (2011) [CrossRef] [Google Scholar]
  8. J. Liu, H. Yuanb, Prediction of residual stress relaxations in shot-peened specimen sand its application for the rotor disc assessment, Mater. Sci. Eng. A 527, 6690–6698 (2010) [CrossRef] [Google Scholar]
  9. V.I. Trufyakov, Y.F. Kudyavtsev, Calculation of the effect of external loading on the relaxation of residual welding stresses, Weld. Int. 3, 22–24 (2010) [CrossRef] [Google Scholar]
  10. O.S. Zaroog, A. Ali, B.B. Sahari, R. Zahari, Modeling of residual stress relaxation of fatigue in 2024-T351 aluminum alloy, Int. J. Fatigue 33, 279–285 (2011) [Google Scholar]
  11. J. Katsuyama, K. Onizawa, Analytical study of the relaxation of welding residual stress by excessive loading for austenitic stainless steel piping welds, J. Pressure Vessel Technol. 133, 417–424 (2011) [CrossRef] [Google Scholar]
  12. H. Yi, Y. Lee, Numerical analysis of welding residual stress relaxation in high-strength multilayer weldment under fatigue loads, Metall. Mater. Trans. B 48, 2167–2175 (2017) [CrossRef] [Google Scholar]
  13. Z. Barsoum, I. Barsoum, Residual stress effects on fatigue life of welded structures using LEFM, Eng. Fail. Anal. 16, 449–467 (2009) [Google Scholar]
  14. J. Katsuyama, K. Onizawa, Analytical study of the relaxation of welding residual stress by excessive loading for austenitic stainless steel piping welds, J. Pressure Vessel Technol. 133, 031402 (2011) [Google Scholar]
  15. J. Katsuyama, Y. Yamaguchi, Y. Li, K. Onizawa, Effect of cyclic loading on the relaxation of residual stress in the butt-weld joints of nuclear reactor piping, Nucle. Eng. Des. 278, 222–228 (2014) [CrossRef] [Google Scholar]
  16. V. Dattoma, M. De Giorgi, R. Nobile, Numerical evaluation of residual stress relaxation by cyclic load, J. Strain Anal. Eng. 39, 663–672 (2004) [CrossRef] [Google Scholar]
  17. Z. Qian, S. Chumbley, T. Karakulak, E. Johnson, The residual stress relaxation behavior of weldments during cyclic loading, Metall. Mater. Trans. A 44A, 3147–3156 (2013) [CrossRef] [Google Scholar]
  18. L.G. Gannon, N.G. Pegg, M.J. Smith, Y. Liu, Effect of residual stress shakedown on stiffened plate strength and behaviour, Ships Offshore Struct. 8, 638–652 (2013) [CrossRef] [Google Scholar]
  19. J. Cho, C.H. Lee, FE analysis of residual stress relaxation in a girth-welded duplex stainless steel pipe under cyclic loading, Int. J. Fatigue 82, 462–473 (2016) [Google Scholar]
  20. C.H. Lee, N.V. Van Do, K.H. Chang, Analysis of uniaxial ratcheting behavior and cyclic mean stress relaxation of a duplex stainless steel, Int. J. Plast. 62, 17–33 (2014) [CrossRef] [Google Scholar]
  21. X.F. Xie, W. Jiang, Y. Luo, S. Xu, J.M. Gong, S.T. Tu, A model to predict the relaxation of weld residual stress by cyclic load: Experimental and finite element modeling, Int. J. Fatigue 95, 293–301 (2017) [Google Scholar]
  22. M. Farajian-Sohi, T. Nitsckhe-Pagel, K. Dilger, Mechanisms of residual rtress relaxation and redistribution in welded high-strength steel specimens under mechanical loading, Weld. Word 54, R366–R374 (2010) [CrossRef] [Google Scholar]
  23. M. Farajian-Sohi, T. Nitsckhe-Pagel, K. Dilger, Residual stress relaxation of quasi-statically and cyclically loaded steel welds Doc. IIW-1980-08 (ex-doc. XIII-2219-08), Weld. World 54, R49–R60 (2010) [CrossRef] [Google Scholar]
  24. ASME Boiler and pressure vessel code: section II- part D properties (ASME, New York, 2015) [Google Scholar]
  25. ASTM E 21–09: Standard test methods for elevated temperature tension tests of metallic materials (ASTM International, New York, 2009) [Google Scholar]
  26. Y. Javadi, M.C. Smith, K. Abburi Venkata et al., Residual stress measurement round robin on an electron beam welded joint between austenitic stainless steel 316L(N) and ferritic steel P91, Int. J. Pres. Ves. Pip. 154, 41–57 (2017) [CrossRef] [Google Scholar]
  27. Y. Javadi, J.A. GoldakA, K. Imani Fooladi, M. Nimrouzi, Using ultrasonic and finite element for residual stress evaluation of a gas transmission pipeline, Mater. Eval. 76, 192–202 (2018) [Google Scholar]
  28. N. Stenbacka, I. Choquet, K. Hurtig, Review of arc efficiency values for gas tungsten arc welding, IIW Commission IV-XII-SG212, Berlin, Germany, 2012, pp. 1–21 [Google Scholar]
  29. G. Fu, M.I. Lourenço, M. Duan, S.F. Estefen, Influence of the welding sequence on residual stress and distortion of fillet welded structures, Mar. Struct. 46, 30–55 (2016) [CrossRef] [Google Scholar]
  30. A. Nath, K.K. Ray, S. Barai, Evaluation of ratcheting behaviour in cyclically stable steels through use of a combined kinematic-isotropic hardening rule and a genetic algorithm optimization technique, Int. J. Mech. Sci. 152, 138–150 (2019) [CrossRef] [Google Scholar]
  31. S. Yun, A. Palazotto, Damage mechanics incorporating two back stress kinematic hardening constitutive models, Eng. Fract. Mech. 74, 2844–2863 (2007) [Google Scholar]
  32. ABAQUS analysis user's manual, version 6.12 [Google Scholar]
  33. ASTM E606/E606M: Standard test method for strain-controlled fatigue testing (ASTM, New York, 2012) [Google Scholar]
  34. R.I. Stephens, A. Fatemi, R.R. Stephens, H.O. Fuchs, Metal Fatigue in Engineering, 2nd edn. (John Wiley & Sons, New York, 2000) [Google Scholar]
  35. F. Lu, G. Kang, Y. Liu, K. Shi, Experimental study on uniaxial cycle deformation of rolled 5083AL alloy plate. 7th ICLCF 87–93, Aachen, Germany, 2013 [Google Scholar]
  36. R.K. Roy, Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process IMPROVEMENT (John Wiley & Sons, New York, 2001) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.