Open Access
Mechanics & Industry
Volume 21, Number 5, 2020
Article Number 504
Number of page(s) 10
Published online 24 July 2020
  1. F.R. Young, Cavitation, Acoust. Soc. Am. 91, 3591 (1992) [CrossRef] [Google Scholar]
  2. B.K. Ahn, T.K. Lee, H.T. Kim et al., Experimental investigation of supercavitating flows, Int. J. Nav. Archit. Ocean Eng. 4, 123–131 (2012) [CrossRef] [Google Scholar]
  3. E. Roohi, M.R. Pendar, A. Rahimi, Simulation of three-dimensional cavitation behind a disk using various turbulence and mass transfer models, Appl. Math. Model. 40, 542–564 (2016) [Google Scholar]
  4. M.R. Pendar, E. Roohi, Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models, Ocean Eng. 112, 287–306 (2016) [CrossRef] [Google Scholar]
  5. E. Kadivar, O. el. Moctar, K. Javadi, Investigation of the effect of cavitation passive control on the dynamics of unsteady cloud cavitation, Appl. Math. Model. 72, 716–716 (2019) [Google Scholar]
  6. D. Yang, Y.L. Xiong, X.F. Guo, Drag reduction of a rapid vehicle in supercavitating flow, Int. J. Nav. Archit. Ocean Eng. 9, 35–44 (2017) [CrossRef] [Google Scholar]
  7. M.J. Braun, W.M. Hannon, Cavitation formation and modelling for fluid film bearings: a review, Proc. Inst. Mech. Eng. J. 224, 839–863 (2010) [CrossRef] [Google Scholar]
  8. D. Sun, S.Y. Li, C.W. Fei et al., Investigation of the effect of cavitation and journal whirl on static and dynamic characteristics of journal bearing, J. Mech. Sci. Technol. 44, 1305–1320 (2019) [Google Scholar]
  9. G.D.C. Kumar, V.A. Kumar, R.K. Gupta et al., Effect of strain rate and temperature on the tensile flow behavior and microstructure evolution in Fe-0.3 Pct C-CrMoV grade steel, Metall. Mater. Trans. A 50A, 161–171 (2019) [CrossRef] [Google Scholar]
  10. V.G. Baidakov, V.E. Vinogradov, Limiting stretchings of liquid oxygen: experiment and classical nucleation theory, Int. J. Heat Mass Transf. 129, 1057–1065 (2019) [Google Scholar]
  11. Q.S. Yan, G. Lu, G.M. Luo et al., Effect of synergistic action of ultrasonic vibration and solidification pressure on tensile properties of vacuum counter-pressure casting aluminum alloy, China Foundry 15, 411–417 (2018) [CrossRef] [Google Scholar]
  12. L.J. Briggs, Limiting negative pressure of water, J. Appl. Phys. 21, 721–722 (1950) [Google Scholar]
  13. A. Prosperetti, Vapor bubbles, Annu. Rev. Fluid Mech. 49, 221–248 (2017) [CrossRef] [Google Scholar]
  14. A.K. Dharmadhikari, J.A. Dharmadhikari, A.V. Mahulkar et al., Dynamics of photothermally created vaporous, gaseous, and mixed microbubbles, J. Phys. Chem. C 115, 6611–6617 (2011) [CrossRef] [Google Scholar]
  15. M. Battistoni, D.J. Duke, A.B. Swantek et al., Effects of NCGes and turbulent fluctuations on cavitation phenomenon in injector nozzle, Atom. Sprays 25, 453–483 (2015) [CrossRef] [Google Scholar]
  16. Y.W. Wang, C.G. Huang, X. Fang et al., Characteristics of the re-entry jet in the cloud cavitating flow over a submerged axisymmetric projectile, Chin. J. Hydrodyn. 28, 23–29 (2013) [Google Scholar]
  17. J. Tang, C. Yan, L.C. Sun, Effects of NCG and ultrasonic vibration on vapor bubble condensing and collapsing, Exp. Therm. Fluid Sci. 61, 210–220 (2015) [CrossRef] [Google Scholar]
  18. W.G. Li, Effects of viscosity on turbine mode performance and flow of a low specific speed centrifugal pump, Appl. Math. Model. 40, 904–926 (2016) [Google Scholar]
  19. D.V. Chirkov, P.K. Shcherbakov, S.G. Cherny et al., Numerical investigation of the air injection effect on the cavitating flow in Francis hydro turbine, Thermophys. Aeromech. 24, 691–703 (2017) [CrossRef] [Google Scholar]
  20. V.B. Kurzin, Model for the formation of acoustic self-oscillations in a chamber with a jet flowing through its nozzle, J. Appl. Mech. Technol. Phys. 58, 1040–1052 (2017) [CrossRef] [Google Scholar]
  21. B. Ji, H.Y. Cheng, B. Huang et al., Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation, Adv. Mech. 49, 201906 (2019) [Google Scholar]
  22. B. Charriere, E. Goncalves, Numerical investigation of periodic cavitation shedding in a Venturi, Int. J. Heat Fluid Flow 64, 41–54 (2017) [Google Scholar]
  23. S.S. Deng, G.D. Li, J.F. Guan et al., Numerical study of cavitation in centrifugal pump conveying different liquid materials, Results Phys. 12, 1834–1839 (2019) [Google Scholar]
  24. E. Kadivar, O. el. Moctar, K. Javadi, Stabilization of cloud cavitation instabilities using cylindrical cavitating-bubble generators (CCGs), Int. J. Multiph. 115, 108–125 (2019) [CrossRef] [Google Scholar]
  25. G.H. Schnerr, J. Sauer, Physical and numerical modeling of unsteady cavitation dynamics, in Fourth International Conference on Multiphase Flow, New Orleans, 2001 [Google Scholar]
  26. P.J. Zwart, A.G. Gerber, T. Belamri, A two-phase flow model for predicting cavitation dynamics, in Fifth International Conference on Multiphase Flow, Yokohama, 2004 [Google Scholar]
  27. A.K. Singhal, H.Y. Li, M.M. Athavale et al., Mathematical basis and validation of the full cavitation model, J. Fluids Eng. Trans. ASME 124, 617–624 (2002) [CrossRef] [Google Scholar]
  28. W. Li, Y.F. Yang, W.D. Shi et al., The correction and evaluation of cavitation model considering the thermodynamic effect, Math. Probl. Eng. 2018, 1–11 (2018) [Google Scholar]
  29. M. Liu, L. Tan, S. Cao, Cavitation–vortex–turbulence interaction and one-dimensional model prediction of pressure for hydrofoil ale15 by large eddy simulation, J. Fluids Eng. Trans. ASME 142, 062013 (2019) [Google Scholar]
  30. C.T. Hsiao, J.S. Ma, G.L. Chahine, Multiscale tow-phase flow modeling of sheet and cloud cavitation, Int. J. Multiph. Flow. 90, 102–117 (2017) [CrossRef] [Google Scholar]
  31. J.S. Ma, C.T. Hsiao, G.L. Chahine, A physics based multiscale modeling of cavitating flows, Comput. Fluids 145, 68–84 (2017) [CrossRef] [PubMed] [Google Scholar]
  32. Y. Zhao, G. Wang, B. Huang, A cavitation model for computations of unsteady cavitating flows, Acta. Mech. Sin. 32, 273–283 (2016) [Google Scholar]
  33. T.Z. Du, Y.W. Wang, L.J. Liao et al., A numerical model for the evolution of internal structure of cavitation cloud, Phys. Fluids 28, 077103 (2016) [Google Scholar]
  34. V. Yakhot, S.A. Orszag, Renormalization group analysis of turbulence. I. Basic theory[J], J. Sci. Comput. 1, 3–51 (1986) [Google Scholar]
  35. V. Yakhot, S.A. Orszag, S. Thangam et al., Development of turbulence models for shear flows by a double expansion technique, Phys. Fluid Fluid Dyn. 4, 1510 (1992) [CrossRef] [MathSciNet] [Google Scholar]
  36. W.D. Shi, G.J. Zhang, D.S. Zhang, Evaluation of turbulence models for the numerical prediction of transient cavitation around a hydrofoil, IOP Conf. Ser. Mater. Sci. Eng. 52, 062013 (2013) [Google Scholar]
  37. L. Zhou, Z. Wang, Numerical simulation of cavitation around a hydrofoil and evaluation of a RNG k-ε model, J. Fluids Eng. Trans. ASME 130, 011302 (2008) [CrossRef] [Google Scholar]
  38. Q. Yang, Y. Wang, Z. Zhang, Scale effects on propeller cavitating hydrodynamic and hydroacoustic performances with non-uniform inflow, Chin. J. Chem. Eng. 26, 414–426 (2013) [Google Scholar]
  39. A. Iannetti, M.T. Stickland, W.M. Dempster, A CFD and experimental study on cavitation in positive displacement pumps: Benefits and drawbacks of the ‘full’ cavitation model, Eng. Appl. Comp. Fluid Mech. 10, 57–71 (2016) [Google Scholar]
  40. A. Iannetti, M.T. Stickland, W.M. Dempster, An advanced CFD model to study the effect of non-condensable gas on cavitation in positive displacement pumps, in 11th international symposium on compressor & turbine flow systems theory & application areas SYMKOM 2014. IMP2, Lodz, 2014 [Google Scholar]
  41. A. Iannetti, M.T. Stickland, W.M. Dempster, A computational fluid dynamics model to evaluate the inlet stroke performance of a positive displacement reciprocating plunger pump, Proc. Inst. Mech. Eng. A 28, 574–584 (2014) [CrossRef] [Google Scholar]
  42. D. Roizard, Antoine Equation[M]// Encyclopedia of Membranes, 2016 [Google Scholar]
  43. J. Wisniak, Historical development of the vapor pressure equation from dalton to Antoine, J. Phase Equ. Diffus. 22, 622–630 (2001) [CrossRef] [Google Scholar]
  44. W. Wagner, New vapour pressure measurements for argon and nitrogen and a new method for establishing rational vapour pressure equations, Cryogenics 13, 470–482 (1973) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.