Issue
Mechanics & Industry
Volume 21, Number 5, 2020
Scientific challenges and industrial applications in mechanical engineering
Article Number 508
Number of page(s) 9
DOI https://doi.org/10.1051/meca/2020010
Published online 10 August 2020
  1. J.P. Hirth, Effects of hydrogen on the properties of iron and steel, Metal. Trans. A 11, 861–890 (1980) [CrossRef] [Google Scholar]
  2. B.E. Sar, S. Fréour, A. Célino, F. Jacquemin, Accounting for differential swelling in the multi-physics modeling of the diffusive behavior of a tubular polymer structure, J. Compos. Mater. 49, 2375–2387 (2014) [Google Scholar]
  3. K. Derrien, P. Gilormini, Interaction between stress and diffusion in polymers, Defect Diffus. Forum 258–260, 447–452 (2006) [Google Scholar]
  4. A. McNabb, P.K. Foster, A new analysis of the diffusion of hydrogen in iron and ferritic steels, Trans. Metall. Soc. AIME 227, 618–627 (1963) [Google Scholar]
  5. H.G. Carter, K.G. Kibler, Langmuir-type model for anomalous moisture diffusion in composite resins, J. Compos. Mater. 12, 118–131 (1978) [Google Scholar]
  6. P. Sofronis, R.M. McMeeking, Numerical analysis of hydrogen transport near a blunting crack tip, J. Mech. Phys. Solids 37, 317–350 (1989) [Google Scholar]
  7. I.M. Bernstein, The role of hydrogen in the embrittlement of iron and steel, Mater. Sci. Eng. A 6, 1–19 (1970) [CrossRef] [Google Scholar]
  8. C.-H. Shen, G.S. Springer, Effects of moisture and temperature on the tensile strength of composite materials, J. Compos. Mater. 11, 2–16 (1977) [Google Scholar]
  9. A.H.M. Krom, R.W.J. Koers, A.D. Bakker, Hydrogen transport near a blunting crack tip, J. Mech. Phys. Solids 47, 971–992 (1999) [Google Scholar]
  10. C.-S. Oh, Y.J. Kim, K.B. Yoon, Coupled analysis of hydrogen transport using ABAQUS, J. Solid Mech. Mater. Eng. 4, 908–917 (2010) [CrossRef] [Google Scholar]
  11. N. Yazdipour, A.J. Haq, K. Muzaka, E.V. Pereloma, 2D modelling of the effect of grain size on hydrogen diffusion in X70 steel, Comput. Mater. Sci. 56, 49–57 (2012) [Google Scholar]
  12. T. Peret, A. Clement, S. Fréour, F. Jacquemin, Numerical transient hygro-elastic analyses of reinforced Fickian and non-Fickian polymers, Compos. Struct. 116, 395–403 (2014) [Google Scholar]
  13. Y. Charles, T.H. Nguyen, M. Gaspérini, Comparison of hydrogen transport through pre-deformed synthetic polycrystals and homogeneous samples by finite element analysis, Int. J. Hydrogen Energy 42, 20336–20350 (2017) [Google Scholar]
  14. Y. Charles, T.H. Nguyen, M. Gaspérini, FE simulation of the influence of plastic strain on hydrogen distribution during an U-bend test, Int. J. Mech. Sci. 120, 214–224 (2017) [CrossRef] [Google Scholar]
  15. S. Benannoune, Y. Charles, J. Mougenot, M. Gaspérini, Numerical simulation of the transient hydrogen trapping process using an analytical approximation of the McNabb and Foster equation, Int. J. Hydrogen Energy 43, 9083–9093 (2018) [Google Scholar]
  16. Y. Zhao, P. Stein, Y. Bai, M. Al-Siraj, Y. Yang, B.-X. Xu, A review on modeling of electro-chemo-mechanics in lithium-ion batteries, J. Power Sources 413, 259–283 (2019) [Google Scholar]
  17. D. Kuhl, F. Bangert, G. Meschke, Coupled chemo-mechanical deterioration of cementitious materials. Part II: Numerical methods and simulations, Int. J. Solids Struct. 41, 41–67 (2004) [Google Scholar]
  18. T. Poulet, A. Karrech, K. Regenauer-Lieb, L. Fisher, P. Schaubs, Thermal-hydraulic-mechanical-chemical coupling with damage mechanics using ESCRIPTRT and ABAQUS, Tectonophysics 526–529, 124–132 (2012) [Google Scholar]
  19. A. Karrech, Non-equilibrium thermodynamics for fully coupled thermal hydraulic mechanical chemical processes, J. Mech. Phys. Solids 61, 819–837 (2013) [Google Scholar]
  20. S. Benannoune, Y. Charles, J. Mougenot, M. Gaspérini, G. De Temmerman, Numerical simulation by finite element modelling of diffusion and transient hydrogen trapping processes in plasma facing components, Nucl. Mater. Energy 19, 42–46 (2019) [CrossRef] [Google Scholar]
  21. P. Gray, S.K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability, Chem. Eng. Sci. 38, 29–43 (1983) [Google Scholar]
  22. P. Gray, S.K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilities in the system A + 2B → 3B; B → C, Chem. Eng. Sci. 39, 1087–1097 (1984) [Google Scholar]
  23. G. Molnár, A. Gravouil, 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture, Finite Elem. Anal. Des. 130, 27–38 (2017) [Google Scholar]
  24. E. Martínez-Pañeda, A. Golahmar, C.F. Niordson, A phase field formulation for hydrogen assisted cracking, Comput. Methods Appl. Mech. Eng. 342, 742–761 (2018) [Google Scholar]
  25. Simulia, Abaqus User subroutines reference guide, Dassault Système (2011) [Google Scholar]
  26. S.A. Chester, C.V. Di Leo, L. Anand, A finite element implementation of a coupled diffusion-deformation theory for elastomeric gels, Int. J. Solids Struct. 52, 1–18 (2015) [Google Scholar]
  27. J. Chen, H. Wang, P. Yu, S. Shen, A finite element implementation of a fully coupled mechanical-chemical theory, Int. J. Appl. Mech. 09, 1750040 (2017) [Google Scholar]
  28. Simulia, Abaqus Analysis User's Manual, Dassault System (2011) [Google Scholar]
  29. Y. Charles, A finite element formulation to model extrinsic interfacial behavior, Finite Elem. Anal. Des. 88, 55–66 (2014) [Google Scholar]
  30. R.A. Barrio, Turing systems: a general model for complex patterns in nature, in: I. Licata, A. Sakaji (Eds.), Physics of Emergence and Organization, World Scientific (2008) 267–296 [CrossRef] [Google Scholar]
  31. H. Meinhardt, Wie Schnecken sich in Schale werfen, Springer Berlin Heidelberg, Berlin, Heidelberg, 1997 [CrossRef] [Google Scholar]
  32. B. Rudovics, E. Barillot, P.W. Davies, E. Dulos, J. Boissonade, P. De Kepper, Experimental studies and quantitative modeling of turing patterns in the (chlorine dioxide, iodine, malonic acid) reaction, J. Phys. Chem. A 103, 1790–1800 (1999) [Google Scholar]
  33. I. Szalai, P. De Kepper, Pattern formation in the ferrocyanide-iodate-sulfite reaction: the control of space scale separation, Chaos 18, 026105 (2008) [Google Scholar]
  34. P.W. Davies, P. Blanchedeau, A.E. Dulos, P. De Kepper, Dividing blobs, chemical flowers, and patterned islands in a reaction−diffusion system, Am. Chem. Soc. (1998). https://doi.org/10.1021/jp982034n. [Google Scholar]
  35. A.S. Mikhailov, G. Ertl, The Belousov-Zhabotinsky Reaction, in: Chemical Complexity, Springer, Cham, Cham (2017) 89–103 [Google Scholar]
  36. J.E. Pearson, Complex Patterns in a Simple System, Science 261, 189–192 (1993) [Google Scholar]
  37. W. Mazin, K.E. Rasmussen, E. Mosekilde, P. Borckmans, G. Dewel, Pattern formation in the bistable Gray-Scott model, Math. Comput. Simul. 40, 371–396 (1996) [Google Scholar]
  38. F. Lesmes, D. Hochberg, F. Morán, J. Pérez-Mercader, Noise-controlled self-replicating patterns, Phys. Rev. Lett. 91, 238301 (2003) [CrossRef] [PubMed] [Google Scholar]
  39. H. Wang, Z. Fu, X. Xu, Q. Ouyang, Pattern formation induced by internal microscopic fluctuations, J. Phys. Chem. A 111, 1265–1270 (2007) [CrossRef] [PubMed] [Google Scholar]
  40. W. Wang, Y. Lin, F. Yang, L. Zhang, Y. Tan, Numerical study of pattern formation in an extended Gray-Scott model, Commun. Nonlinear Sci. Numer. Simul. 16, 2016–2026 (2011) [Google Scholar]
  41. R.P. Munafo, Stable localized moving patterns in the 2-D Gray-Scott model. https://arxiv.org/abs/1501.01990 (2014) [Google Scholar]
  42. A. Adamatzky, Generative complexity of Gray-Scott model, Commun. Nonlinear Sci. Numer. Simul. 56, 457–466 (2018) [Google Scholar]
  43. T. Hutton, R.P. Munafo, A. Trevorrow, T. Rokicki, D. Wills, Ready, a cross-platform implementation of various reaction-diffusion systems, (2011) GNU General Public License. https://github.com/GollyGang/ready/ [Google Scholar]
  44. D. Bennewies, Final Report, Waterloo, Ontario, Canada, 2012. https://github.com/derekrb/gray-scott [Google Scholar]
  45. F. Buric, Pattern formation and chemical evolution in extended Gray-Scott models, Chalmers University of Technology, Göteborg, Sweden, 2014. http://github.com/phil-b-mt/egs [Google Scholar]
  46. R.P. Munafo, Reaction-Diffusion by the Gray-Scott Model: Pearson's Parametrization. https://mrob.com/pub/comp/xmorphia/ (accessed April 2017) [Google Scholar]
  47. D. Gizaw, Finite element method applied to gray-scott reaction-diffusion problem. Using FEniCs Software, Adv. Phys. Theories Appl. 58, 5–8 (2016) [Google Scholar]
  48. T. Lun, Finite Element Simulation of Pattern Formation in Gray-Scott Model, Researchgate.Net. (2016). https://doi.org/10.13140/RG.2.1.2780.6329 [Google Scholar]
  49. C. Xie, X. Hu, Finite element simulations with adaptively moving mesh for the reaction diffusion system, Numer. Math. Theory Methods Appl. 9, 686–704 (2016) [CrossRef] [Google Scholar]
  50. T. Lun, Gray-Scott Coupled Mechanical Model, Researchgate.Net. (2016). https://doi.org/10.13140/RG.2.1.3994.3928 [Google Scholar]
  51. S. Benannoune, Y. Charles, J. Mougenot, M. Gaspérini, G. De Temmerman, Multidimensional finite element simulations of the diffusion and trapping of hydrogen in plasma-facing components including thermal expansion, Phys. Scripta (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.