Issue |
Mechanics & Industry
Volume 21, Number 5, 2020
Scientific challenges and industrial applications in mechanical engineering
|
|
---|---|---|
Article Number | 509 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/meca/2020032 | |
Published online | 10 August 2020 |
- F.A.L. Dullien, Porous media – Fluid transport and pore structure, 2nd edn. Academic Press, Cambridge, 1992 [Google Scholar]
- A.E. Scheidegger, The physics of flow through porous media, 3rd edn., University of Toronto Press, Toronto, 1974 [Google Scholar]
- M. Kaviany, Principles of heat transfert in porous media, 2nd edn., Springer, Berlin, 1995 [Google Scholar]
- P.M. Adler, Porous media: geometry and transports, Butterworth-Heinemann, Oxford, 1992 [Google Scholar]
- Z.E. Heinemann, Fluid flow in porous media, Textbook series 1, 2003 [Google Scholar]
- E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. Computations from Nitrogen isotherms, J. Am. Chem. Soc. 73, 373–380 (1951) [Google Scholar]
- M. Brun, A. Lallemand, J.-F. Quinson, C. Eyraud, A new method for the simultaneous determination of the size and the shape of pores: the thermoporometry, Thermochim. Acta 21, 59–88 (1977) [Google Scholar]
- H. Tamon, H. Ishizaka, Saxs study on gelation process in preparation of resorcinol-formaldehyde aerogel, J. Colloid Interface Sci. 206, 577–582 (1998) [Google Scholar]
- D. Pearson, A.J. Allen, A study of ultrafine porosity in hydrated cements using small angle neutron scattering, J. Mater. Sci. 20, 303–315 (1985) [Google Scholar]
- A.I. Sagidullin, I. Furo, Pore size distribution in small samples and with nanoliter volume resolution by NMR cryoporometry, Langmuir 24, 4470–4472 (2008) [CrossRef] [PubMed] [Google Scholar]
- J.M. Haynes, Stereological analysis of pore structure, J. Mater. Struct. 6, 175–179 (1973) [Google Scholar]
- A. Oukhlef, S. Champmartin, A. Ambari, Yield stress fluids method to determine the pore size distribution of a porous medium, J. Non-Newton. Fluid Mech. 204, 87–93 (2014) [CrossRef] [Google Scholar]
- A. Oukhlef, Détermination de la distribution de tailles de pores d’un milieu poreux, Thèse, ENSAM d’Angers, 2011 [Google Scholar]
- J. Kozeny, Uber kapillare leitung des wassers im boden, Stizungsberichte der Akademie der Wissenschaften in Wien 136(2a) 106–271 (1927) [Google Scholar]
- P.C. Carman, Fluid flow through granular beds, Trans. Inst. Chem. Eng. 15, 154–155 (1937) [Google Scholar]
- W.R. Purcell, Capillary pressure – Their measurement using mercury and the calculation of permeability therefrom, J. Pet. Tech. 1, 39–48 (1949) [CrossRef] [Google Scholar]
- R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids, 2nd edn., Vol. I, John Wiley & Sons, New York, 1987 [Google Scholar]
- A. Ambari, M. Benhamou, S. Roux, E. Guyon, Pore size distribution in a porous medium obtained by a non-Newtonian fluid flow characteristic, C. R. Acad. Sci. Paris 311, 1291–1295 (1990) [Google Scholar]
- M.R. Malin, Turbulent pipe flow of Herschel-Bulkley fluids, Int. Comm. Heat Mass Transf. 25, 321–330 (1998) [CrossRef] [Google Scholar]
- K.B. Oldham, J. Spanier, The fractional calculus, Academic Press, Cambridge, 1974, p. 53 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.