Issue
Mechanics & Industry
Volume 21, Number 5, 2020
Scientific challenges and industrial applications in mechanical engineering
Article Number 519
Number of page(s) 11
DOI https://doi.org/10.1051/meca/2020034
Published online 14 August 2020
  1. M. Kachanov, Advances in Applied Mechanics, vol. 30, Academic Press, New York, 1993 [Google Scholar]
  2. S. Nemat-Nasser, M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials, in: Applied Mathematics and Mechanics, vol. 37, Elsevier Science, Amsterdam, 1993 [Google Scholar]
  3. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. A 421, 379–396 (1957) [Google Scholar]
  4. T. Mura, Micromechanics of Defects in Solids, Martinus Nijhoff, Boston, 1987 [CrossRef] [Google Scholar]
  5. T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallica 21, 571–4 (1973) [Google Scholar]
  6. P. Ponte Castañeda, J. Willis, The effect of spatial distribution on the effective behavior of composite materials and cracked media, J. Mech. Phys. Solids 43, 1919–1951 (1995) [Google Scholar]
  7. J.R. Bristow, Microcracks, and the static and dynamic elastic constants of annealed heavily cold-worked metal, J. Appl. Phys. 11, 81–5 (1960) [Google Scholar]
  8. S. Torquato, Random Heterogeneous Materials. Microstructure and Macroscopic Properties, Springer Science+Business Media, New York, 2002 [Google Scholar]
  9. X.D. Wang, L.Y. Jiang, The effective electroelastic property of piezoelectric media with parallel dielectric cracks, Int. J. Solids Struct. 40, 5287–303 (2003) [Google Scholar]
  10. P.N. Sævik, I. Berre, M. Jakobsen, M. Lien, A 3D Computational Study of Effective Medium Methods Applied to Fractured Media, Transp. Porous Med. 100, 115–42 (2013) [CrossRef] [Google Scholar]
  11. I. Sevostianov, M. Kachanov, On the effective properties of polycrystals with intergranular cracks, Int. J. Solids Struct. 156-157, 243–250 (2019) [Google Scholar]
  12. I. Sevostianov, Thermal conductivity of a material containing cracks of arbitrary shape, Int. J. Eng. Sci. 44, 513–28 (2006) [Google Scholar]
  13. M.N. Vu, S.T. Nguyen, M.H. Vu, A.M. Tang, V.T. To, Heat conduction and thermal conductivity of 3D cracked media, Int. J. Heat Mass Trans. 89, 1119–26 (2015) [CrossRef] [Google Scholar]
  14. A.B. Tran, M.N. Vu, S.T. Nguyen, T.Q. Dong, K. Le-Nguyen, Analytical and numerical solutions for heat transfer and effective thermal conductivity of cracked media, J. Appl. Geophys. 149, 35–41 (2018) [CrossRef] [Google Scholar]
  15. A. Hoenig, Thermal conductivities of a cracked solid, J. Compos. Mater. 17, 231–7 (1983) [Google Scholar]
  16. H. Hatta, M. Taya, Equivalent inclusion method for steady state heat conduction in composites, Int. J. Eng. Sci. 24, 1159–72 (1986) [Google Scholar]
  17. Y. Benveniste, T. Miloh, An exact solution for the effective thermal conductivity of cracked bodies with oriented elliptical cracks, J. App. Pys. 66, 176–80 (1989) [CrossRef] [Google Scholar]
  18. B. Shafiro, M. Kachanov, Anisotropic effective conductivity of material with nonrandomly oriented inclusions of divers ellipsoidal shapes, J. Appl. Phys. 87, 8561–9 (2000) [Google Scholar]
  19. S.T. Nguyen, M.-H. Vu, M.N. Vu, A.M. Tang, Modeling of heat flow and effective thermal conductivity of fractured media: Analytical and numerical methods, J. Appl. Geophys. 140, 117–22 (2017) [CrossRef] [Google Scholar]
  20. V. Deudé, L. Dormieux, D. Kondo, V. Pensée, Propriétés élastiques non linéaires d’un milieu mésofissuré, C. R. Mécanique 330, 587–92 (2002) [CrossRef] [Google Scholar]
  21. J.K. Carson, S.J. Lovatt, D.J. Tanner, A.C. Cleland, An analysis of the influence of material structure on the effective thermal conductivity of theoretical porous materials using finite element simulations, Int. J. Refrig. 26, 873–880 (2003) [Google Scholar]
  22. S. Tang, C. Tang, Z. Liang, Y. Zhang, L. Li, Numerical Study of the Influence of Material Structure on Effective Thermal Conductivity of Concrete, Heat Trans. Eng. 33, 732–47 (2012) [CrossRef] [Google Scholar]
  23. L. Shen, Q. Ren, N. Xia, L. Sun, X. Xia, Mesoscopic numerical simulation of effective thermal conductivity of tensile crackedconcrete, Constr. Build. Mater. 95, 467–75 (2015) [Google Scholar]
  24. B. Budiansky, R. O’Connell, Elastic moduli of a cracked solid, Int. J. Solids Struct. 12, 81–97 (1976) [Google Scholar]
  25. R. Hill, Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids 11, 357–72 (1963) [Google Scholar]
  26. J.G. Berryman, Generalization of Eshelby’s formula for a single ellipsoidal elastic inclusion to poroelasticity and thermoelasticity, Phys. Rev. Lett. 79, 1142–1145 (1997) [Google Scholar]
  27. S.R. Rangasamy Mahendren, H. Welemane, O. Dalverny, A. Tongne, Thermal conduction properties of microcracked media: Accounting for the unilateral effect, C. R. Mécanique 347, 944–52 (2019) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.