Open Access
Mechanics & Industry
Volume 21, Number 6, 2020
Article Number 604
Number of page(s) 9
Published online 30 September 2020
  1. G. Hamza, M. Hammadi, M. Barkallah, J. Y. Choley, A. Riviere, J. Louati, M. Haddar, Compact analytical models for vibration analysis in Modelica/Dymola: application to the wind turbine drive train system, J. Chin. Soc. Mech. Eng. 39, 121–130 (2018) [Google Scholar]
  2. O.A. Bauchau, J. Changkuan, Modeling friction phenomena in flexible multibody dynamics, Comput. Methods Appl. Mech. Eng. 195, 6909–6924 (2006) [Google Scholar]
  3. I.I. Kosenko et al., Multibody systems dynamics: Modelica implementation and Bond Graph representation, in Proceedings of the 5th International Modelica Conference, arsenal research, Vienna, Austria, 2006, pp. 213–223 [Google Scholar]
  4. A. Siemers, Contributions to Modelling and Visualization of Multibody Systems Simulations with Detailed Contact Analysis, Diss, Linköping University Electronic Press, 2010 [Google Scholar]
  5. A.A. Shabana, Flexible multibody dynamics: review of past and recent developments, Multibody Syst. Dyn. 1, 189–222 (1997) [Google Scholar]
  6. I. Nakhimovski, Contributions to the modeling and simulation of mechanical systems with detailed contact analyses, Diss, Linköping University Electronic Press, 2006 [Google Scholar]
  7. A. Picarelli, M. Dempsey, Investigating the multibody dynamics of the complete powertrain system, in Proceedings of the 7th International Modelica Conference; Como; Italy, Linköping University Electronic Press, 2009, pp. 423–433 [CrossRef] [Google Scholar]
  8. S. Laurent, Symbolic modeling of electromechanical multibody systems, Louvain-la-Neuve (Belgium), 2004 [Google Scholar]
  9. M. Schneider, A. Haumer, R. Köckeis, Modelling and simulation of the passive structure of a 5-axis-milling machine with rigid and flexible bodies for evaluating the static and dynamic behavior, Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, Linköping University Electronic Press, 2017, pp. 389–395 [Google Scholar]
  10. M. Hammadi, J.Y. Choley, Parametric compact modelling of dynamical systems using meshfree method with multi-port technique, Int. J. Dyn. Syst. Diff. Eq. 5, 206–219 ( 2015) [Google Scholar]
  11. M. Hammadi, J.Y. Choley, F. Mhenni, A multi-agent methodology for multi-level modeling of mechatronic systems, Int. J. Dyn. Syst. Differ. Equ. 28, 208–217 (2014) [Google Scholar]
  12. M. Hammadi, J.Y. Choley, O. Penas, A. Riviere, J. Louati, M. Haddar, A new multi-criteria indicator for mechatronic system performance evaluation in preliminary design level, in 13th International Workshop on Mechatonics, 9th France–Japan and 7th Europe–Asia Congress on Research and Education in Mechatronics (REM), 2012, pp. 409–416 [Google Scholar]
  13. R.G. Longoria, Modeling of Mechanical Systems for Mechatronics Applications, The University of Texas, Austin, USA, 2002 [Google Scholar]
  14. G. Hamza, Contribution aux développements des modèles analytiques compacts pour l'analyse vibratoire des systèmes mécatroniques. Diss. Paris Saclay, 2016 [Google Scholar]
  15. G. Hamza, J.Y. Choley, M. Hammadi, M. Barkallah, J. Louati, A. Riviere, M. Haddar, Analytical approach for the integrated preliminary analysis of mechatronic systems subjected to vibration, Mecatronics (MECATRONICS), 10th France-Japan/8th Europe-Asia Congress on. IEEE, 2014, pp. 151–155 [Google Scholar]
  16. G. Hamza, J.Y. Choley, M. Hammadi, M. Barkallah, J. Louati, A. Riviere, M. Haddar, Pre-dimensioning of the dynamic properties of the wind turbine system using analytical approach, Design and Modeling of Mechanical Systems-II, Springer, Cham, 2015, pp. 179–188 [Google Scholar]
  17. G. Hamza, J.Y. Choley, M. Hammadi, M. Barkallah, J. Louati, A. Riviere, M. Haddar, Conceptual design methodology for the preliminary study of a mechatronic system: application to wind turbine system, Mech. Ind. 18, 413 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  18. N. Zrnić, D. Oguamanam, S. Bošnjak, Dynamics and modeling of mega quayside container cranes, FME Trans. 34, 193–198 (2006) [Google Scholar]
  19. G. Hamza, J.Y. Choley, M. Hammadi, M. Barkallah, J. Louati, A. Riviere, M. Haddar, Pre-designing of a mechatronic system using an analytical approach with dymola, J. Theor. Appl. Mech. 53, 697–710 (2015) [CrossRef] [Google Scholar]
  20. Y.H. Lin, C.H. Cho, Vibration suppression of beam structures traversed by multiple moving loads using a damped absorber, J. Mar. Sci. Technol 1, 39–48 (1993) [Google Scholar]
  21. R.M. Soares, Z. Prado, P. Gonçalves, On the vibration control of beams using a moving absorber and subjected to moving loads, Asociación Argentina de Mecánica Computacional 29, 1829–1840 (2010) [Google Scholar]
  22. Y.-G. Sung, Modelling and control with piezoactuators for a simply supported beam under a moving mass, J. Sound Vib. 250, 617–626 (2002) [Google Scholar]
  23. W. Gafsi, R. Chaari, N. Masmoudi, M.T. Khabou, F. Chaari, M. Haddar, Modeling of a passive absorber in milling tool machine, Appl. Acoustics 128, 94–110 (2017) [CrossRef] [Google Scholar]
  24. F.S. Samani, F. Pellicano, A. Masoumi, Performances of dynamic vibration absorbers for beams subjected to moving loads, Nonlinear Dyn. 73, 1065–1079 (2013) [Google Scholar]
  25. M.M. Stanis̆ić, J.C. Hardin, On the response of beams to an arbitrary number of concentrated moving masses, J. Franklin Inst. 287, 115–123 (1969) [Google Scholar]
  26. J. Fortgang, W. Singhose, Concurrent design of vibration absorbers and input shapers, J. Dyn. Syst. Measur. Control 127, 329–335 (2005) [CrossRef] [Google Scholar]
  27. I. Esen, Dynamic response of a beam due to an accelerating moving mass using moving finite element approximation, Math. Comput. Appl. 16, 171–182 (2011) [Google Scholar]
  28. V. Gašić, N. Zrnić, A. Obradović, S. Bošnjak, Consideration of moving oscillator problem in dynamic responses of bridge cranes, FME Trans. 39, 17–24 (2011) [Google Scholar]
  29. J. Hu, E.D. Goodman, S. Li, R. Rosenberg, Automated synthesis of mechanical vibration absorbers using genetic programming, AI EDAM 22, 207–217 (2008) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.