Open Access
Mechanics & Industry
Volume 21, Number 6, 2020
Article Number 610
Number of page(s) 12
Published online 11 November 2020
  1. H. Aouici, M. Elbah, A. Benkhelladi, B. Fnides, L. Boulanouar, M.A. Yallese, Comparison on various machinability aspects between mixed and reinforced ceramics when machining hardened steels. Mechanics & Industry 20 , 109 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
  2. S.N. Grigoriev, M.A. Volosova, S.V. Fedorov, E.A. Ostrikov, E.S. Mustafaev, K. Hamdy, The formation of the cutting tool microgeometry by pulsed laser ablation. Mechanics & Industry 19 , 703 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  3. B.S. Yilbas, S.S. Akhtar, C. Karatas. Laser cutting of alumina tiles: heating and stress analysis. J Manuf Process 15 , 14–24 (2013) [Google Scholar]
  4. M.A. Dabnun, M.S.J. Hashmi, M.A. El-Baradie, Surface roughness prediction model by design of experiments for turning machinable glass-ceramic (Macor). J. Mate. Process. Tech 164-165 , 1289–1293 (2005) [CrossRef] [Google Scholar]
  5. Y. Luo, X. Wang, D. Wu, Quality investigation of alumina ceramic laser cutting based on vapor-to-melt ratio. J. Laser. Appl 30 , 032002 (2018) [Google Scholar]
  6. R.M. Lumley, Controlled separation of brittle materials using a laser, Am. Ceram. Soc. Bull 48 , 850–854 (1969) [Google Scholar]
  7. L.J. Yang, Y. Wang, Z.G. Tian, N. Cai, YAG laser cutting soda-lime glass with controlled fracture and volumetric heat absorption. Int. J. Mach. Tool. Manu 50 , 849–859 (2010) [CrossRef] [Google Scholar]
  8. K.R. Kim, J.H. Kim, D.F. Farson, H.W. Choi, K.H. Kim, Hybrid laser cutting for flat panel display glass. Jpn. J. Appl. Phys 47 , 6978 (2008) [Google Scholar]
  9. C. Zhao, H. Zhang, L. Yang, Y. Wang, Y. Ding, Dual laser beam revising the separation path technology of laser induced thermal-crack propagation for asymmetric linear cutting glass. Int. J. Mach. Tool. Manu 106 , 43–55 (2016) [CrossRef] [Google Scholar]
  10. O. Haupt, V. Schuetz, A. Schoonderbeek, L. Richter, R. Kling, High quality laser cleaving process for mono-and polycrystalline silicon. Proceedings of SPIE. 72020G-72020G-11 (2009) [Google Scholar]
  11. O. Haupt, F. Siegel, A. Schoonderbeek, Laser dicing of silicon: comparison of ablation mechanisms with a novel technology of thermally induced stress. J. Laser. Micro. Nanoen 3 , 135–140 (2008) [CrossRef] [Google Scholar]
  12. A.M. Saman, T. Furumoto, T. Ueda, A. Hosokawa, A study on separating of a silicon wafer with moving laser beam by using thermal stress cleaving technique. J. Mate. Process. Tech 223 , 252–261 (2015) [CrossRef] [Google Scholar]
  13. Y. Cai, L. Yang, H. Zhang, Y. Wang, Laser cutting silicon-glass double layer wafer with laser induced thermal-crack propagation. Opt. Laser. Eng 82 , 173–185 (2016) [CrossRef] [Google Scholar]
  14. X. Cheng, L. Yang, M. Wang, Y. Cai, Y. Wang, Z. Ren, Laser beam induced thermal-crack propagation for asymmetric linear cutting of silicon wafer. Opt. Laser. Technol 120 , 105765 (2019) [Google Scholar]
  15. X. Cheng, L. Yang, M. Wang, Y. Cai, Y. Wang, Z. Ren, The unbiased propagation mechanism in laser cutting silicon wafer with laser induced thermal-crack propagation. Appl. Phys. A 125 , 479 (2019) [CrossRef] [Google Scholar]
  16. T. Ueda, K. Yamada, K. Oiso, A. Hosokawa, Thermal stress cleaving of brittle materials by laser beam. CIRP Ann-Manuf. Technol 51 , 149–152 (2002) [CrossRef] [Google Scholar]
  17. K. Yamada, T. Ueda, A. Hosokawa, Y. Yamane, K. Sekiya, Thermal damage of silicon wafer in thermal cleaving process with pulsed laser and CW laser. Proc of Spie, 6107 , 61070H–61070H-10 (2006) [CrossRef] [Google Scholar]
  18. C.H. Tsai, C.J. Chen, Application of iterative path revision technique for laser cutting with controlled fracture. Opt. Laser. Eng 41 , 189–204 (2004) [CrossRef] [Google Scholar]
  19. C.H. Tsai, H.W. Chen, Laser cutting of thick ceramic substrates by controlled fracture technique. J. Mate. Process. Tech 136 , 166–173 (2003) [CrossRef] [Google Scholar]
  20. H. Wang, H. Zhang, Y. Wang, Splitting of glass and SiC ceramic sheets using controlled fracture technique with elliptic microwave spot. Ceram. Int. 43 , 1669–1676 (2016) [Google Scholar]
  21. H. Wang, H. Zhang, Y. Wang, M. Wang, Thermal controlled fracture of Al2O3 substrate by inducing microwave discharge in graphite coat. Ceram. Int 45 , 6149–6159 (2019) [Google Scholar]
  22. H. Wang, M. Wang, H. Zhang, Y. Wang, Use of inner-heated circular microwave spot to cut glass sheets based on thermal controlled fracture method. J. Mate. Process. Tech 276 , 116309 (2020) [CrossRef] [Google Scholar]
  23. W.H. Sutton, Microwave processing of ceramic materials. Ceramic Bulletin 68 , 376–385 (1989) [Google Scholar]
  24. L. Brian, Fracture of brittle solids, second ed., Cambridge University Press. Cambridge University Press, 1993 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.