Open Access
Issue
Mechanics & Industry
Volume 21, Number 6, 2020
Article Number 609
Number of page(s) 19
DOI https://doi.org/10.1051/meca/2020080
Published online 04 November 2020
  1. A. Kossiakoff, W.N. Sweet, S.J. Seymour, S.M. Biemer, Systems engineering principles and practice, John Wiley & Sons, 2011 [CrossRef] [Google Scholar]
  2. R. Plateaux, O. Penas, J.-Y. Choley, F.M. M'henni, A. Rivière, Integrated design methodology of a mechatronic system, Mécanique & Industries 11 , 401–406 (2010) [CrossRef] [Google Scholar]
  3. G. Hamza, M. Hammadi, M. Barkallah, J.-Y. Choley, A. Riviere, J. Louati, M. Haddar, Conceptual design methodology for the preliminary study of a mechatronic system: application to wind turbine system, Mechanics & Industry 18 , 413 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  4. J.F. Mologni, M. Bonadiman, A.C. Guimaraes, L. Alvarenga, A. Colin, J.O.S. Paulino, Accelerating the vehicle development process by employing EMI and EMC numerical analysis assisted by high performance computing, SAE International, Warrendale, PA, 2010 [Google Scholar]
  5. Y. Zhang, X. Zhang, Y. Ding, L. Jiang, Research on electromagnetic compatibility of new energy vehicles, DEStech Transactions on Engineering and Technology Research 0 (2017). https://doi.org/10.12783/dtetr/icvmee2017/14638 [Google Scholar]
  6. D.N.J. Carter, The past, present and future challenges of aircraft EMC, IEEE Electromagnetic Compatibility Magazine 1 , 4 (2012) [Google Scholar]
  7. S. Ranganathan, D.G. Beetner, R. Wiese, T.H. Hubing, An expert system architecture to detect system-level automotive EMC problems, in: IEEE, 2002, pp. 976–981 [Google Scholar]
  8. T. Rybak, M. Steffka, Automotive electromagnetic compatibility (EMC), Springer Science & Business Media, 2004 [Google Scholar]
  9. H. Zhao, G. Li, N. Wang, S. Zheng, L. Yu, Y. Chen, Study of EMC problems with vehicles, in: Information computing and applications, Springer, Berlin, Heidelberg, 2013, pp. 159–168 [CrossRef] [Google Scholar]
  10. B. Vrignon, P. Caunegre, J. Shepherd, J. Wu, Automatic verification of EMC immunity by simulation, in: 2013 9th International Workshop on Electromagnetic Compatibility of Integrated Circuits (EMC Compo), 2013, pp. 202–207 [CrossRef] [Google Scholar]
  11. K. Burnham, Automotive system integration for EMC, in: 2017 IEEE International Symposium on Electromagnetic Compatibility Signal/Power Integrity (EMCSI), 2017, pp. 1–20 [Google Scholar]
  12. L. Wang, W. Shen, H. Xie, J. Neelamkavil, A. Pardasani, Collaborative conceptual designðstate of the art and future trends, 16 (2002) [Google Scholar]
  13. N. Perry, M. Mauchand, A. Bernard, Costs models in design and manufacturing of sand casting products, in: A. Bramley, D. Brissaud, D. Coutellier, C. McMahon (Eds.), Advances in Integrated Design and Manufacturing in Mechanical Engineering Springer-Verlag, Berlin/Heidelberg, 2005, pp. 69–80 [CrossRef] [Google Scholar]
  14. J.A. Crowder, J.N. Carbone, R. Demijohn, Multidisciplinary systems engineering: architecting the design process, Springer, 2015 [Google Scholar]
  15. M. Kharrat, O. Penas, R. Plateaux, H. Trabelsi, J.Y. Choley, J. Louati, M. Haddar, Towards a 3D conceptual architecture framework, based on multi-physical constraints, in: 2017 IEEE International Systems Engineering Symposium (ISSE), 2017, pp. 1–8 [Google Scholar]
  16. C. Capasso, M. Hammadi, S. Patalano, R. Renaud, O. Veneri, A multi-domain modelling and verification procedure within MBSE approach to design propulsion systems for road electric vehicles, Mechanics & Industry 18 , 107 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  17. R. Barbedienne, Y.B. Messaoud, J.Y. Choley, O. Penas, A. Ouslimani, A. Rivière, SAMOS for spatial architecture based on multi-physics and organisation of systems in conceptual design, in: 2015 IEEE International Symposium on Systems Engineering (ISSE), 2015, pp. 135–141 [CrossRef] [Google Scholar]
  18. R. Barbedienne, O. Penas, J.Y. Choley, L. Gasser, TheReSE: SysML extension for thermal modeling, in: 2015 Annual IEEE Systems Conference (SysCon) Proceedings, Vancouver, BC, 2015, pp. 301–308 [CrossRef] [Google Scholar]
  19. R. Plateaux, Continuité et cohérence d'une modélisation des systèmes mécatroniques basée(s) sur une structure topologique, PhD Thesis, Ecole Centrale Paris, 2011 [Google Scholar]
  20. M.M. Chaabane, Modélisation géométrique et mécanique pour les systèmes mécatroniques, PhD Thesis, École Centrale Paris, 2014 [Google Scholar]
  21. N. Abdeljabbar Kharrat, R. Plateaux, M. Miladi Chaabane, J.-Y. Choley, C. Karra, M. Haddar, Integration of topological modification within the modeling of multi-physics systems: application to a Pogo-stick, Comptes Rendus Mécanique 346 , 351–365 (2018) [CrossRef] [Google Scholar]
  22. O. Penas, R. Plateaux, J.Y. Choley, A. Rivière, The different complexity levels in mechatronic design process, in: 3rd International Conference on Software, Knowledge, Information Management and Applications SKIMA, Fès, Morocco, 2009 [Google Scholar]
  23. R. Plateaux, J.Y. Choley, O. Penas, A. Riviere, Towards an integrated mechatronic design process, in: 2009 IEEE International Conference on Mechatronics, 2009, pp. 1–6 [Google Scholar]
  24. M.M. Chaabane, R. Plateaux, J.-Y. Choley, C. Karra, A. Rivière, M. Haddar, Topological approach to solve frame structures using topological collections and transformations, Comptes Rendus Mécanique 342 , 466–477 (2014) [CrossRef] [Google Scholar]
  25. N. Abdeljabbar Kharrat, R. Plateaux, M. Miladi Chaabane, J.-Y. Choley, C. Karra, M. Haddar, Topological modeling of 2D piezoelectric truss structure using the MGS language, in: M. Haddar, F. Chaari, A. Benamara, M. Chouchane, C. Karra, N. Aifaoui (Eds.), Design and Modeling of Mechanical Systems—III, Springer International Publishing, Cham 2018, pp [Google Scholar]
  26. C.R. Paul, R.T. Abraham, Coupling of electromagnetic fields to transmission lines, in: 1981 IEEE International Symposium on Electromagnetic Compatibility, 1981, pp. 1–7 [Google Scholar]
  27. R.F. Harrington, Field computation by moment methods, Wiley-IEEE Press, 1993 [CrossRef] [Google Scholar]
  28. K.S. Kunz, R.J. Luebbers, The finite difference time domain method for electromagnetics, CRC press, 1993 [Google Scholar]
  29. C.R. Paul, Analysis of multiconductor transmission lines, John Wiley & Sons, 2008 [Google Scholar]
  30. O. Maurice, La compatibilité électromagnétique des systèmes complexes, Lavoisier, Cachan, 2007 [Google Scholar]
  31. O. Maurice, Quelques exemples d'analyses théoriques en compatibilité électromagnétique, Bookelis, 2018 [Google Scholar]
  32. P. Kirawanich, N. Kranthi, N.E. Islam, S.J. Yakura, Electromagnetic topology-based analysis of coupling through small aperture on cables of communication systems, Electromagnetics 25 , 589–602 (2005) [CrossRef] [Google Scholar]
  33. J. Parmantier, Numerical coupling models for complex systems and results, IEEE Transactions on Electromagnetic Compatibility 46 , 359–367 (2004) [Google Scholar]
  34. P. Besnier, Electromagnetic topology: an additional interaction sequence diagram for transmission line network analysis, IEEE Transactions on Electromagnetic Compatibility 48 , 685–692 (2006) [Google Scholar]
  35. J.-P. Parmantier, I. Junqua, EM topology: from theory to application, in: Ultra-Wideband, Short-Pulse Electromagnetics 7, Springer, 2007, pp. 3–12 [Google Scholar]
  36. C.E. Baum, Electromagnetic topology for the analysis and design of complex electromagnetic systems, in: Fast Electrical and Optical Measurements, Springer, 1986, pp. 467–547 [Google Scholar]
  37. C.E. Baum, How to think about EMP interaction, in: Proceedings of the1974 Spring FULMEN Meeting, 1974 [Google Scholar]
  38. F.M. Tesche, Topological concepts for internal EMP interaction, IEEE Transactions on Electromagnetic Compatibility, 60–64 (1978) [Google Scholar]
  39. E. Genender, H. Garbe, F. Sabath, Probabilistic risk analysis technique of intentional electromagnetic interference at system level, IEEE Transactions on Electromagnetic Compatibility 56 , 200–207 (2014) [Google Scholar]
  40. O. Maurice, Adaptation of Kron's tensorial analysis of network for the EMC design and analysis of systems, (2016). https://hal.archives-ouvertes.fr/hal-01382221 (accessed May 9, 2018) [Google Scholar]
  41. R. Barbedienne, O. Penas, J.Y. Choley, A. Rivière, A. Warniez, F.D. Monica, Introduction of geometrical contraints modeling in SysML for mechatronic design, in: 2014 10th France-Japan/8th Europe-Asia Congress on Mecatronics (MECATRONICS2014- Tokyo), Tokyo, Japan, 2014, pp. 145–150 [CrossRef] [Google Scholar]
  42. M. Mardiguian, Manuel pratique de compatibilité électromagnétique: prédictions et solutions aux perturbations électromagnétiques, Lavoisier, 2003 [Google Scholar]
  43. J.Y. Lim, K.Y. See, E.K. Chua, Impact of circuit impedance on signal crosstalk, in: 2015. https://www.researchgate.net/publication/280495863_Impact_of_Circuit_Impedance_on_Signal_Crosstalk [Google Scholar]
  44. M. Kharrat, N. Abdeljabbar, O. Penas, R. Plateaux, J. Louati, M. Miladi Chaaben, J.-Y. Choley, M. Haddar, EMC risk assessment process through a topological analysis, 12th France-Japan/10th Europe-Asia Congress on Mecatronics (Mie, Japan MECATRONICS 2018), Submitted. (2018) [Google Scholar]
  45. M. Reuter, S. Tenbohlen, W. Köhler, Influence of a traction battery's input impedance on conducted emissions of an automotive HV inverter, in: 2013 International Symposium on Electromagnetic Compatibility, 2013, pp. 229–234 [Google Scholar]
  46. B. Willmann, T. Rinkleff, M. Obholz, R. Vick, Automotive industry's EMC requirements for voltage ripple in the high-voltage system of electrical vehicles, in: IEEE, 2015, pp. 673–678 [Google Scholar]
  47. M. Kharrat, O. Penas, R. Plateaux, J.-Y. Choley, H. Trabelsi, J. Louati, M. Haddar, Integration of electromagnetic constraints as of the conceptual design through an MBSE approach, IEEE Systems Journal, 1–12 (2020) [Google Scholar]
  48. O. Maurice, Theoretical application of the tensorial analysis of network for EMC at the system level (2007) [Google Scholar]
  49. G. Kron, Tensors for circuits, Dover Publications, 1959. http://archive.org/details/TensorsForCircuits (accessed December 24, 2018) [Google Scholar]
  50. O. Maurice, Compatibilité électromagnétique − Notions fondamentales, Techniques de l'ingénieur. E1302 v2 (2016) [Google Scholar]
  51. G. Oliva, R. Setola, L. Glielmo, C.N. Hadjicostis, Distributed cycle detection and removal, IEEE Transactions on Control of Network Systems 5 , 194–204 (2018) [Google Scholar]
  52. E.W. Dijkstra, C.S. Scholten, Termination detection for diffusing computations, Information Processing Letters 11 , 1–4 (1980) [Google Scholar]
  53. M. Safar, K. Alenzi, S. Albehairy, Counting cycles in an undirected graph using DFS-XOR algorithm, in: 2009 First International Conference on Networked Digital Technologies, IEEE, 2009, pp. 132–139 [CrossRef] [Google Scholar]
  54. C. Cassiolato, Inductive coupling and how to minimize their effects in industrial installations | SMAR − Industrial Automation, SMAR (2011). http://www.smar.com/en/technical-article/inductive-coupling-and-how-to-minimize-their-effects-in-industrial-installations (accessed December 6, 2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.