Open Access
Mechanics & Industry
Volume 21, Number 6, 2020
Article Number 614
Number of page(s) 16
Published online 27 November 2020
  1. A. Pfahl, J. Coventry, M. Röger, F. Wolfertstetter, J.F. V‘asquez-Arango, F. Gross, M. Arjomandi, P. Schwarzbözl, M. Geiger, P. Liedke, Progress in heliostat development, Solar Energy 152, 3–37 (2017) [CrossRef] [Google Scholar]
  2. G.J. Kolb, S.A. Jones, M.W. Donnelly, D. Gorman, R. Thomas, R. Davenport, R. Lumia, Heliostat cost reduction study. Sandia National Laboratories, Albuquerque, NM, Report No. SAND2007-3293, 103 (2007) [Google Scholar]
  3. M.J. Emes, M. Arjomandi, G.J. Nathan, Effect of heliostat design wind speed on the levelised cost of electricity from concentrating solar thermal power tower plants, Solar Energy 115, 441–451 (2015) [CrossRef] [Google Scholar]
  4. M.J. Emes, M. Arjomandi, F. Ghanadi, R.M. Kelso, Effect of turbulence characteristics in the atmospheric surface layer on the peak wind loads on heliostats in stow position. Solar Energy 157, 284–297 (2017) [CrossRef] [Google Scholar]
  5. J.A. Peterka, B. Bienkiewicz, B.N. Hosoya, J.E. Cermak, Heliostat mean wind load reduction, Energy 314, 261–267 (1987) [CrossRef] [Google Scholar]
  6. A. Pfahl, H. Uhlemann, Wind loads on heliostats and photovoltaic trackers at various reynolds numbers, Journal of Wind Engineering and Industrial Aerodynamics 99, 964–968 (2011) [CrossRef] [Google Scholar]
  7. A. Pfahl, M. Buselmeier, M. Zaschke, Wind loads on heliostats and photovoltaic trackers of various aspect ratios, Solar Energy 85, 2185–2201 (2011) [CrossRef] [Google Scholar]
  8. A. Pfahl, M. Randt, C. Holze, S. Unterschütz, Autonomous light-weight heliostat with rim drives, Solar Energy 92, 230–240 (2013) [CrossRef] [Google Scholar]
  9. Z. Wu, B. Gong, Z. Wang, Z. Li, C. Zang, An experimental and numerical study of the gap effect on wind load on heliostat, Renewable Energy 35(4), 797–806 (2010) [CrossRef] [Google Scholar]
  10. M. Mammar, S. Djouimaa, U. Gartner, A. Hamidat, Wind loads on heliostats of various column heights: an experimental study. Energy 143, 867–880 (2018) [CrossRef] [Google Scholar]
  11. B. Gong, Z. Li, Z. Wang, Y. Wang, Wind-induced dynamic response of heliostat, Renewable Energy 38, 206–213 (2012) [CrossRef] [Google Scholar]
  12. NBN EN 1991-1-4 ABN. Eurocode 1: Actions on structures-Part 1-4: General actions-Wind actions, National Annex (2010) [Google Scholar]
  13. NASA Ames, Heliostat flow visualization experiments. Fluid Mechanic Laboratory (2011) [Google Scholar]
  14. C. Chia-Ren, T. Sheng-Jue, Aerodynamic loading of solar trackers on flat-roofed buildings, Journal of Wind Engineering and Industrial Aerodynamics 175, 202–212 (2018) [CrossRef] [Google Scholar]
  15. A. Ayodeji, H. Horia, S. Kamran, Experimental investigation of wind effects on a standalone photovoltaic (PV) module, Renewable Energy 78, 657–665 (2015) [CrossRef] [Google Scholar]
  16. M.J. Emes, A. Jafari, F. Ghanadi, M. Arjomandi, Hinge and overturning moments due to unsteady heliostat pressure distributions in a turbulent atmospheric boundary layer, Solar Energy 193, 604–617 (2019) [CrossRef] [Google Scholar]
  17. A.M. Aly, G. Bitsuamlak, Aerodynamics of ground-mounted solar panels: test model scale effects, Journal of Wind Engineering and Industrial Aerodynamics 123, 250–260 (2013) [CrossRef] [Google Scholar]
  18. J.A. Peterka, Z. Tan, J.E. Cermak, B. Bienkiewicz, Mean and peak wind loads on heliostats, Journal of Solar Energy Engineering 111, 158–164 (1989) [CrossRef] [Google Scholar]
  19. P.W. Bearman, An investigation of the forces on flat plates normal to a turbulent flow, Journal of Fluid Mechanics 46, 177–198 (1971) [CrossRef] [Google Scholar]
  20. X. Ortiz, D. Rival, D. Wood, Forces and moments on flat plates of small aspect ratio with application to PV wind loads and small wind turbine blades. Energies 8, 2438–2453 (2015) [CrossRef] [Google Scholar]
  21. J.E. Cermak, J.A. Peterka, A. Kareem, Heliostat field array wind tunnel test, Report CER78-79JEC-JAP-AK2, Fluid Mechanics and Wind Engineering Program, Colorado State University (1978) [Google Scholar]
  22. G. Vita, H. Hemida, T. Andrianne, C. Baniotopoulos, Generating atmospheric turbulence using passive grids in an expansion test section of a wind tunnel, Journal of Wind Engineering and Industrial Aerodynamics 178, 91–104 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.