Open Access
Mechanics & Industry
Volume 21, Number 6, 2020
Article Number 615
Number of page(s) 14
Published online 04 December 2020
  1. S.K. Pattnaik, N.K. Bhoi, S. Padhi, S.K. Sarangi, Dry machining of aluminum for proper selection of cutting tool: tool performance and tool wear, Int. J. Adv. Manuf. Technol. 98 , 55–65 (2018) [CrossRef] [Google Scholar]
  2. T. Régnier, G. Fromentin, B. Marcon, J. Outeiro, A. d'Acunto, A. Crolet, T. Grunder, Fundamental study of exit burr formation mechanisms during orthogonal cutting of AlSi aluminium alloy, J. Mater. Process. Technol. 257 , 112–122 (2018) [CrossRef] [Google Scholar]
  3. S. Werda, A. Duchosal, et al., Effect of minimum quantity lubrication strategies on tribological study of simulated machining operation, Mech. Ind. 20 , 624–630 (2019) [CrossRef] [Google Scholar]
  4. W. Frifita, S.B. Salem. et al., Optimization of machining parameters in turning of Inconel 718 Nickel-base super alloy, Mech. Ind. 21 , 203 (2020) [CrossRef] [Google Scholar]
  5. M. Helu, B. Behmann, H. Meier, D. Dornfeld, G. Lanza, V. Schulze, Total cost analysis of process time reduction as a green machining strategy, in: Leveraging technology for a sustainable world, pp. 299–304, Springer, Berlin, Heidelberg (2012) [Google Scholar]
  6. S. Anderberg, S. Kara, Energy and cost efficiency in CNC machining. The 7th CIRP Conference on Sustainable Manufacturing, Chennai, India (2009) [Google Scholar]
  7. A. Das, S.R. Das, S.K. Patel, B.B. Biswal, Experimental investigation of various machining attributes and cost estimation during machining of hardened AISI 4340 steel with untreated and cryo treated cermet inserts, Mech. Ind. 21 , 110 (2020) [CrossRef] [Google Scholar]
  8. G. Liu, C. Huang, R. Su, T. Özel, Y. Liu, L. Xu, 3D FEM simulation of the turning process of stainless steel 17-4PH with differently texturized cutting tools, Int. J. Mech. Sci. 155 , 417–429 (2019) [CrossRef] [Google Scholar]
  9. F. Salvatore, T. Mabrouki, H. Hamdi, The use of numerical simulations to improve a new analytical chip formation model, Mech. Ind. 13 , 405–414 (2012) [CrossRef] [Google Scholar]
  10. J.C. Outeiro, D. Umbrello, R. M'Saoubi, I.S. Jawahir, Evaluation of present numerical models for predicting metal cutting performance and residual stresses, Mach. Sci. Technol. 19 , 183–216 (2015) [CrossRef] [Google Scholar]
  11. H. Ijaz, M. Zain-ul-abdein, W. Saleem, M. Asad, T. Mabrouki, Numerical simulation of the effects of elastic anisotropy and grain size upon the machining ofAA2024. Mach. Sci. Technol. 22 , 522–542 (2018) [CrossRef] [Google Scholar]
  12. C.J. Yin, Q.C. Zheng, Y.H. Hu, Finite element simulation of Titanium alloy turning process, Appl. Mech. Mater. 391 , 14–17 (2013) [CrossRef] [Google Scholar]
  13. N. Tounsi, T. El-Wardany, Finite element analysis of chip formation and residual stresses induced by sequential cutting in side milling with microns to sub-micron uncut chip thickness and finite cutting edge radius, Adv. Manuf. 3 , 309–322 (2015) [CrossRef] [Google Scholar]
  14. X. Lai, H. Li, C. Li, Z. Lin, J. Ni, Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness, Int. J. Mach. Tools Manuf. 48 , 1–14 (2008) [CrossRef] [Google Scholar]
  15. S. Subbiah, S.N. Melkote, Effect of finite edge radius on ductile fracture ahead of the cutting tool edge in micro-cutting of Al2024-T3, Mater. Sci. Eng. A 474 , 283–300 (2008) [CrossRef] [Google Scholar]
  16. Y. Zhang, J.C. Outeiro, T. Mabrouki, On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4 V using three types of numerical models of orthogonal cutting, Procedia CIRP. 31 , 112–117 (2015) [CrossRef] [Google Scholar]
  17. A. Shrot, M. Baker, Determination of Johnson-Cook parameters from machining simulations, Comput. Mater. Sci. 52 , 298–304 (2012) [CrossRef] [Google Scholar]
  18. M. Asad, Elaboration of concepts and methodologies to study peripheral down-cut milling process from macro-to-micro scales, PhD Dissertation, INSALyon, France, 2010 [Google Scholar]
  19. T. Mabrouki, F. Girardin, M. Asad, J.-F. Rigal, Numerical and experimental study of dry cutting for an aeronautic aluminium alloy (A2024-T351), Int. J. Mach. Tools Manuf. 48 , 1187–1197 (2008) [CrossRef] [Google Scholar]
  20. M. Asad, T. Mabrouki, H. Ijaz, M.A. Khan, W. Saleem, On the turning modeling and simulation: 2D and 3D FEM approaches, Mech. Ind. 15 , 427–434 (2014) [CrossRef] [Google Scholar]
  21. T. Ozel, I. Llanos, J. Soriano, P.J. Arrazola, 3D finite element modelling of chip formation process for machining Inconel 718: comparison of FE software predictions, Mach. Sci. Technol. 15 , 21–46 (2011) [CrossRef] [Google Scholar]
  22. J. Díaz-Álvarez, J.L. Cantero, H. Miguélez, X. Soldani, Numerical analysis of thermomechanical phenomena influencing tool wear in finishing turning of Inconel 718, Int. J. Mech. Sci. 82 , 161–169 (2014) [CrossRef] [Google Scholar]
  23. P. Ståhle, A. Spagnoli, M. Terzanob, On the fracture processes of cutting, Procedia Struct. Integr. 3 , 468–476 (2017) [CrossRef] [Google Scholar]
  24. J.G. Williams, Y. Patel, Fundamentals of cutting, Interface Focus 6 , 20150108 (2016) [CrossRef] [PubMed] [Google Scholar]
  25. Y. Gao, J.H. Ko, H.P. Lee, Meso-scale tool breakage prediction based on finite element stress analysis for shoulder milling of hardened steel, J. Manuf. Process. 55 , 31–40 (2020) [CrossRef] [Google Scholar]
  26. L.J. Ma, A.B. Yu, J. Chen, Theoretical model of cutting force in turning the lithium disilicate glass-ceramic, Int. J. Adv. Manuf. Technol. 1–12 (2017) [Google Scholar]
  27. Y. Su, S. Yu, S. Li, Y. He, Review of the damage mechanism in wind turbine gearbox bearings under rolling contact fatigue, Front. Mech. Eng. 14 , 434–441 (2019) [CrossRef] [Google Scholar]
  28. H. Ijaz, Mathematical modelling and simulation of delamination crack growth in glass fiber reinforced plastic (GFRP) composite laminates, J. Theor. App. Mech. 57 , 17–26 (2019) [CrossRef] [Google Scholar]
  29. A. Malakizadi, K. Hosseinkhani, E. Mariano, E. Ng, A. Del Prete, L. Nyborg, Influence of friction models on FE simulation results of orthogonal cutting process, Int. J. Adv. Manuf. Tech. 88 , 3217–3232 (2017) [CrossRef] [Google Scholar]
  30. A.P. Markopoulos, N.E. Karkalos, N.M. Vaxevanidis, D.E. Manolakos, Friction in orthogonal cutting finite elements models with large negative rake angle, Tribol. Ind. 38 (2016) [Google Scholar]
  31. X. Zhang, S. Wu, H. Wang, C.R. Liu, Predicting the effects of cutting parameters and tool geometry on hard turning process using finite element method, J. Manuf. Sci. E-T ASME 133 , 041010 (2011) [CrossRef] [Google Scholar]
  32. A.M. Bragov, V.V. Balandin, A.Y. Konstantinov, A.K. Lomunov, I.V. Vorobtsov, A.V. Kuznetsov, G.G. Savenkov, High-rate deformation and spall fracture of some metals, Procedia Eng. 197 , 260–269 (2017) [CrossRef] [Google Scholar]
  33. F. Wang, Q. Tao, L. Xiao, J. Hu, L. Xu, Simulation and analysis of serrated chip formation in cutting process of hardened steel considering ploughing-effect, J. Mech. Sci. Technol. 32 , 2029–2037 (2018) [CrossRef] [Google Scholar]
  34. X. Teng, T. Wierzbicki, Evaluation of six fracture models in high velocity perforation engineering, Fract. Mech. 73 , 1653–1678 (2006) [CrossRef] [Google Scholar]
  35. Z.Y. Han, X.G. Huang, Y.G. Cao, J.Q. Xu, A non linear cumulative evolution model for corrosion fatigue damage, J. Zhejiang Univ. Sci. A 15 , 447–453 (2014) [CrossRef] [Google Scholar]
  36. Y. Choi, H. Kim, Development of a cohesive zone model for fatigue crack growth, Multiscale Sci. Eng. 2 , 42–53 (2020) [CrossRef] [Google Scholar]
  37. T.T. Opoz, X. Chen, Chip formation mechanism using finite element simulation, J. Mech. Eng. 62 (2016) [Google Scholar]
  38. K. Vivekananda, G.N. Arka, S.K. Sahoo, Finite element analysis and process parameters optimization of ultrasonic vibration assisted turning (UVT), Procedia Mater. Sci. 6 , 1906–1914 (2014) [CrossRef] [Google Scholar]
  39. M. Asad, H. Ijaz, W. Saleem, A.S.B. Mahfouz, Z. Ahmad, T. Mabrouki, Finite element analysis and statistical optimization of end-burr in turning AA2024, Metals 9 , 1–19 (2019) [Google Scholar]
  40. W. Saleem, M. Asad, M. Zain-ul-abdein, H. Ijaz, T. Mabrouki, Numerical investigations of optimum turning parameters—AA2024-T351 aluminum alloy, Mach. Sci. Technol. 20 , 634–654 (2016) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.