Open Access
Issue
Mechanics & Industry
Volume 22, 2021
Article Number 6
Number of page(s) 13
DOI https://doi.org/10.1051/meca/2021004
Published online 08 March 2021
  1. M. Bartram, G. Mavros, S. Biggs, A study on the effect of road friction on driveline vibrations. Proc. Inst. Mech. Eng. K 224, 321–340 (2010) [Google Scholar]
  2. M. Ahmadian and W. Huang, A numerical evaluation of the suspension and driveline dynamic coupling in heavy trucks. SAE Trans. 560–569 (2004) [Google Scholar]
  3. H. Kanchwala, A.S. Trigell, Vehicle handling control of an electric vehicle using active torque distribution and rear wheel steering. Int. J. Vehicle Des. 74, 319–345 (2017) [Google Scholar]
  4. H. Kanchwala, J. Wideberg, Pitch reduction and traction enhancement of an EV by real-time brake biasing and in-wheel motor torque control. Int. J. Veh. Syst. Model. Test. 11, 165–192 (2016) [Google Scholar]
  5. Ph. Couderc, J. Callenaere, J. Der Hagopian, G. Ferraris, A. Kassai, Y. Borjesson, L. Verdillon, S. Gaimard, Vehicle driveline dynamic behaviour: experimentation and simulation. J. Sound Vib. 218, 133–157 (1998) [Google Scholar]
  6. A. Sorniotti, Driveline modeling, experimental validation and evaluation of the influence of the different parameters on the overall system dynamics. Technical report, SAE Technical Paper (2008) [Google Scholar]
  7. J.Y. Wong, Theory of ground vehicles. John Wiley & Sons (2008) [Google Scholar]
  8. G. Mavros, Contact mechanics of tyre–road interactions and its role in vehicle shuffle. In Tribology and Dynamics of Engine and Powertrain (Elsevier, 2010), pp. 703–734 [Google Scholar]
  9. W. Li, X.H. Shi, D. Guo, P. Yi, A test technology of a vehicle driveline test bench with electric drive dynamometer for dynamic emulation. Technical report, SAE Technical Paper (2015) [Google Scholar]
  10. AWD, Range Rover Sport. https://www.landrover.co.uk/vehicles/range-rover-sport/index.html [Google Scholar]
  11. H. Pacejka, Tire and vehicle dynamics (Elsevier, 2005) [Google Scholar]
  12. G.N.B.Hathron, The Development Of An Off-Road Environment Simulator (ORES). PhD Thesis. Cranfield University, 2011 [Google Scholar]
  13. R.D. Nine, N.N. Clark, J.J. Daley, C.M. Atkinson, Development of a heavy-duty chassis dynamometer driving route. Proc. Inst. Mech. Eng. D 213, 561–574 (1999) [Google Scholar]
  14. F.C. Teng, Real-time control using matlab simulink. In Smc 2000 conference proceedings. 2000 IEEE international conference on systems, man and cybernetics. ’cybernetics evolving to systems, humans, organizations, and their complex interactions’ (cat. no. 0, Vol. 4 (IEEE, 2000), pp. 2697–2702 [Google Scholar]
  15. H. Kanchwala, I. Bezerra Viana, N. Aouf, Cooperative path-planning and tracking controller evaluation using vehicle models of varying complexities. Proc. Inst. Mech. Eng. C 0954406220945468 (2020) [Google Scholar]
  16. A. Soltani, A. Goodarzi, M.H. Shojaeefard, K. Saeedi, Optimizing tire vertical stiffness based on ride, handling, performance, and fuel consumption criteria. J. Dyn. Syst. Measur. Control 137 (2015) [CrossRef] [PubMed] [Google Scholar]
  17. H. Kanchwala, Studies in simplified dynamic modeling and characterization of vehicle suspensions. PhD Thesis, Indian Institute of Technology, Kanpur. (2017) [Google Scholar]
  18. L. Li, C. Sandu, Modeling and simulation of 2d arma terrain models for vehicle dynamics applications. SAE Trans. 1–9 (2007) [Google Scholar]
  19. H. Kanchwala, A. Chatterjee, Adams model validation for an all-terrain vehicle using test track data. Adv. Mech. Eng. 11, 1687814019859784 (2019) [Google Scholar]
  20. K.M. Captain, A.B. Boghani, D.N. Wormley, Analytical tire models for dynamic vehicle simulation. Vehicle Syst. Dyn. 8, 1–32 (1979) [Google Scholar]
  21. P.W.A. Zegelaar, H.B. Pacejka, The in-plane dynamics of tyres on uneven roads. Vehicle Syst. Dyn. 25, 714–730 (1996) [Google Scholar]
  22. A.J.C. Schmeitz, A semi-empirical three-dimensional model of the pneumatic tyre rolling over arbitrarily uneven roadsurfaces 2004 [Google Scholar]
  23. J.R. Kilner, Pneumatic tire model for aircraft simulation. J. Aircraft 19, 851–857 (1982) [Google Scholar]
  24. K. Guo, Tire roller contact model for simulation of vehicle vibration input. Technical report, SAE Technical Paper, 1993 [Google Scholar]
  25. J. Kisilowski, Z. Lozia, Modelling and simulating the braking process of automotive vehicle on uneven surface. Vehicle Syst. Dyn. 15, 250–263 (1986) [Google Scholar]
  26. J.M. Badalamenti, G.R. Doyle Jr., Radial-interradial spring tire models. J. Vib. Acoust. Stress Reliab. Des. 110, 70–75 (1988) [Google Scholar]
  27. B.G. Kao, M. Muthukrishnan, Tire transient analysis with an explicit finite element program. Tire Sci. Technol. 25, 230–244 (1997) [Google Scholar]
  28. A.J.C. Schmeitz, J.P. Pauwelussen, An efficient dynamic ride and handling tyre model for arbitrary road unevennesses. In Reifen, Fahrwerk, Fahrbahn: Tagung Hannover, 18-19 Oktober 2001. VDI-Verlag (2001) 173–199 [Google Scholar]
  29. M. Eichler, A ride comfort tyre model for vibration analysis in full vehicle simulations. Vehicle Syst. Dyn. 27, 109–122 (1997) [Google Scholar]
  30. I.B. Viana, H. Kanchwala, K. Ahiska, N. Aouf, A comparison of trajectory planning and control frameworks for cooperative autonomous driving. J. Dyn. Syst. Measur. Control (2021) [Google Scholar]
  31. P.W.A.Zegelaar, The dynamic response of tyres to brake torque variations and roadunevennesses 1998 [Google Scholar]
  32. J. Pauwelussen, Essentials of vehicle dynamics (Butterworth-Heinemann, 2014) [Google Scholar]
  33. J.S. Dhillon, Vehicle dynamics modelling for an off-road high performance application using a multibody systemsapproach 2016 [Google Scholar]
  34. Tracker. Open Source video analysis and modeling tool. https://physlets.org/tracker/ [Google Scholar]
  35. S. Jung, T.Y. Kim, W.S. Yoo, Advanced slip ratio for ensuring numerical stability of low-speed driving simulation. Part I: Longitudinal slip ratio. Proc. Inst. Mech. Eng. D 233, 2000–2006 (2019) [Google Scholar]
  36. C.L. Clover, J.E. Bernard, Longitudinal tire dynamics. Vehicle Syst. Dyn. 29, 231–260 (1998) [Google Scholar]
  37. P. Fancher, J. Bernard, C. Clover, C. Winkler, Representing truck tire characteristics in simulations of braking and braking-in-a-turn maneuvers. Vehicle Syst. Dyn. 27, 207–220 (1997) [Google Scholar]
  38. H. Kanchwala, J. Wideberg, C. Bordons Alba, D. Marcos, Control of an independent 4WD electric vehicle by DYC method. Int. J. Veh. Syst. Model. Test 10, 168–184 (2015) [Google Scholar]
  39. J.J. Zhu, Study of vehicle dynamics with planar suspension systems (pss) (2011) [Google Scholar]
  40. Y.C. Chang, T.T. Fu, A useful tire model for ATV ride performance on rough roads. Technical report, SAE Technical Paper (2010) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.