Issue
Mechanics & Industry
Volume 22, 2021
Advances of junior researchers in aerospace sciences: a focus on innovative design
Article Number 19
Number of page(s) 15
DOI https://doi.org/10.1051/meca/2021012
Published online 25 March 2021
  1. https://climate.nasa.gov/causes/ (accessed on 21 October 2020) [Google Scholar]
  2. UN Climate Change Conference (December 2019). https://unfccc.int/cop25 [Google Scholar]
  3. D.S. Lee, D.W. Fahey, P.M. Forster, P.J. Newton, R.C.N. Wit, L.L. Lim, B. Owen, R. Sausen, Robert, Aviation and global climate change in the 21st century, Atmospheric Environment 43 , 3520–3537 (2009) [CrossRef] [PubMed] [Google Scholar]
  4. International Energy Agency, CO2 Emissions from Fuel Combustion (2017) [Google Scholar]
  5. A.W. Schäfer, S.R.H. Barrett, K. Doyme et al., Technological, economic and environmental prospects of all-electric aircraft. Nat Energy 4 , 160–166 (2019) [Google Scholar]
  6. Airbus Global Market Forecast 2017–2037 (Airbus Commercial Aircraft, Toulouse, 2017) [Google Scholar]
  7. Boeing Current Market Outlook 2017–2036 (Boeing Commercial Airplanes, Seattle, 2017) [Google Scholar]
  8. R.M. Arnaldo Valdés, S. Burmaoglu, T. Vincenzo, L.M. Braga da Costa Campos, L. Mattera, V.F. Gomez Comendador, Flight path 2050 and ACARE goals for maintaining and extending industrial leadership in aviation: a map of the aviation technology space, Sustainability 11 , 2065 (2019) [Google Scholar]
  9. European Commission, Flightpath 2050 Europe's vision for aviation, Technical report. Luxembourg, Belgium: Publications Office of the European Union. http://ec.europa.eu/transport/modes/air/doc/flightpath2050.pdf/ (2007) [Google Scholar]
  10. ACARE-Advisory Council for Aviation Research and Innovation in Europe, (2017). https://www.acare4europe.org/sites/acare4europe.org/files/document/ACARE-Strategic-Research-Innovation-Volume-1.pdf (accessed on 21 October 2020) [Google Scholar]
  11. PARSIFAL (Prandtl plane ARchitecture for the Sustainable Improvement of Future AirpLanes). http://parsifalproject.eu/ (accessed on 21 October 2020) [Google Scholar]
  12. ARTEM (Aircraft noise Reduction Technologies and related Environmental iMpact). https://www.dlr.de/at/en/desktopdefault.aspx/tabid-12792/22417_read-51601/ (accessed on 21 October 2020) [Google Scholar]
  13. MAHEPA (Modular Approach to Hybrid Electric Propulsion Architecture). https://mahepa.eu/ [Google Scholar]
  14. V. Viswanathan, B.M. Knapp, Potential for electric aircraft. Nat Sustain 2 , 88–89 (2019) [Google Scholar]
  15. National Academies of Sciences, Engineering, and Medicine, Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions. Washington, DC: The National Academies Press, 2016 [Google Scholar]
  16. B. Brelje, J. Martins, Electric, hybrid, and turboelectric fixed-wing aircraft: a review of concepts, models, and design approaches, Progress in Aerospace Sciences 104, 1–19 (2019) [Google Scholar]
  17. H. Kuhn, A. Seitz, L. Lorenz, A.T. Isikveren, A. Sizmann, B. Luftfahrt, Progress and perspectives of electric air transport, 28th International Congress of the Aeronautical Sciences, ICAS, Brisbane, Australia, 2012 [Google Scholar]
  18. H. Kuhn, A. Sizmann, Fundamental Prerequisites of Electric Flying. Proceedings of the German Aerospace Congress (DLRK), Berlin, Germany, 2012 [Google Scholar]
  19. A.R. Gnadt, R.L. Speth, J.S. Sabnis, S.R.H. Barrett, Technical and environmental assessment of all-electric 180-passenger commercial aircraft, Progress in Aerospace Sciences (2018). doi: 10.1016/j.paerosci.2018.11.002. [Google Scholar]
  20. D. Ciliberti, F. Orefice, P. Vecchia, F. Nicolosi, S. Corcione, Salvatore, An approach to preliminary sizing of turbo-electric aircraft with distributed propulsion, AIDAA Congress, Rome, 2019 [Google Scholar]
  21. R. De Vries, M. Brown, R. Vos, A preliminary sizing method for hybrid-electric aircraft including aero-propulsive interaction effects, Aviation Technology, Integration, and Operations Conference, 2018 [Google Scholar]
  22. L. Trainelli, F. Salucci, N. Rossi, C.E.D. Riboldi, A. Rolando, Preliminary Sizing and Energy Management of Serial Hybrid-Electric Airplanes, AIDAA Congress, Rome, 2019 [Google Scholar]
  23. M. Strack, G.P. Chiozzotto, M. Iwanizki, M. Plohr, M. Kuhn, Conceptual Design Assessment of Advanced Hybrid Electric Turboprop Aircraft Configurations, in: Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations Conference, Denver, CO, USA, 5–9 June 2017 [Google Scholar]
  24. M.B.J. Voskuijl, A.G. Rao, Analysis and design of hybrid electric regional turboprop aircraft, CEAS Aeronautical Journal 9 , 15–25 (2018) [Google Scholar]
  25. A. Sgueglia, P. Schmollgruber, N. Bartoli, E. Benard, J. Morlier, J. Jasa, J.S. Gray, Multidisciplinary design optimization framework with coupled derivative computation for hybrid aircraft, Journal of Aircraft 57 , 715–729 (2020) [Google Scholar]
  26. A. Frediani, The Prandtl wing. VKI lecture series: Innovative Configurations and Advanced Concepts for Future Civil transport Aircraft, 6–10 June 2005 [Google Scholar]
  27. L. Prandtl, Induced drag of multiplanes, NACA-TN-182, URL: http://ntrs.nasa.gov/search.jsp?R=19930080964 (1924) [Google Scholar]
  28. A. Frediani, V. Cipolla, F. Oliviero, Design of a prototype of light amphibious Prandtl Plane, 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2015, p. 0700 [Google Scholar]
  29. D.F. Finger, C. Braun, C. Bil, An initial sizing methodology for hybrid-electric light aircraft, Aviation Technology Integration and Operations Conference, Atlanta, GA, USA, 2018, June 25–29 [Google Scholar]
  30. http://web.mit.edu/drela/Public/web/avl/ (accessed on 10 January 2020) [Google Scholar]
  31. https://web.mit.edu/drela/Public/web/xfoil/ (accessed on 10 January 2020) [Google Scholar]
  32. D. Raymer, Aircraft design: a conceptual approach, Sixth Edition, Washington, D.C.: American Institute of Aeronautics and Astronautics, 2018, 10.2514/4.104909 [Google Scholar]
  33. J.D. Mattingly, W.H. Heiser, D.H. Daley, Aircraft engine design, American Institute of Aeronautics and Astronautics, Washington, DC, 1987 [Google Scholar]
  34. T. Nam, A generalized sizing method for revolutionary concepts under probabilistic design constraints, Ph.D thesis, Georgia Institute of Technology, Atlanta, 2007 [Google Scholar]
  35. Airbus Industry, Getting to Grips with Aircraft Performance, Flight Operations Support & Line Assistance (2002) [Google Scholar]
  36. A. Filippone, Advanced aircraft flight performance, Cambridge University Press, 2012 [Google Scholar]
  37. D.P. Wells, B.L. Horvath, L.A. McCullers, The flight optimization system weights estimation method, Tech. Rep. (2017) [Google Scholar]
  38. S. Stückl, Methods for the design and evaluation of future aircraft concepts utilizing electric propulsion systems, PhD Dissertation, Technische Universität München, 2016 [Google Scholar]
  39. PROSIB Project, deliverable 4.1.1, University of Naples, Electric power storage sytems: future trends, technincal characteristics and performance, 2020 [Google Scholar]
  40. http://www.atraircraft.com/products/ATR-42-600.html (accessed 09 January 2020) [Google Scholar]
  41. T. Hofman, Alternative fuels and advanced vehicle technologies for improved environmental performance, Woodhead Publishing, 2014, pp. 567–581 [Google Scholar]
  42. Eurostat, Energy statistics, 2017 edition [Google Scholar]
  43. IATA, IATA Carbon Offset Program, Frequently asked question, version 10.1, (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.