Open Access
Issue
Mechanics & Industry
Volume 22, 2021
Article Number 22
Number of page(s) 15
DOI https://doi.org/10.1051/meca/2021023
Published online 02 April 2021
  1. T.M. Conboy, M.D. Carlson, G.E. Rochau, Dry-cooled supercritical CO2 power for advanced nuclear reactors, J. Eng. Gas Turb. Power 137 , 1 (2015) [Google Scholar]
  2. V. Dostal, P. Hejzlar, M.J. Driscoll, High-prformance supercritical carbon dioxide cycle for next-generation nuclear reactors, Nucl. Technol. 154, 265–282 (2006) [Google Scholar]
  3. Y. Ahn, S.J. Bae, M. Kim, S.K. Cho, S. Baik, J.I. Lee, J.E. Cha, Review of supercritical CO2 power cycle technology and current status of research and development, Nucl. Eng. Technol. 47 , 647–661 (2015) [Google Scholar]
  4. C.S. Turchi, Z.W. Ma, T.W. Neises, M.J. Wagner, Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems, J. Sol. Energy Eng. Trans. ASME 135 , 7 (2013) [Google Scholar]
  5. M.A. Reyes-Belmonte, A. Sebastian, M. Romero, J. Gonzalez-Aguilar, Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant, Energy 112 , 17–27 (2016) [Google Scholar]
  6. B. Halimi, K.Y. Suh, Computational analysis of supercritical CO2 brayton cycle power conversion system for fusion reactor, Energy Convers. Manag. 63 , 38–43 (2012) [Google Scholar]
  7. E.M. Clementoni, T.L. Cox, C.P. Sprague, Startup and operation of a supercritical carbon dioxide brayton cycle, J. Eng. Gas. Turb. Power Trans. ASME 136 , 6 (2014) [Google Scholar]
  8. S.G. Kim, J. Lee, Y. Ahn, J.I. Lee, Y. Addad, B. Ko, CFD investigation of a centrifugal compressor derived from pump technology for supercritical carbon dioxide as a working fluid, J. Supercrit. Fluids 86 , 160–171 (2014) [Google Scholar]
  9. J.Y. Heo, J. Kwon, J.I. Lee, A study of supercritical carbon dioxide power cycle for concentrating solar power applications using an isothermal compressor, J. Eng. Gas. Turb. Power Trans. ASME 140 , 8 (2018) [Google Scholar]
  10. Y. Ahn, J. Lee, S.G. Kim, J.I. Lee, J.E. Cha, S.W. Lee, Design consideration of supercritical CO2 power cycle integral experiment loop, Energy 86 , 115–127 (2015) [Google Scholar]
  11. H. Gurgenci, Supercritical CO2 cycles offer experience curve opportunity to CST in remote area markets, Elsevier Science Bv, Amsterdam, 2014 [Google Scholar]
  12. E. Drury, G. Brinkman, P. Denholm, R. Margolis, M. Mowers, Exploring large-scale solar deployment in DOE's SunShot vision study, New York, 2012 [Google Scholar]
  13. C.S. Turchi, Z. Ma, T.W. Neises, M.J. Wagner, Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems, ASME J. Sol. Energy 135 , 4 (2013) [CrossRef] [Google Scholar]
  14. W. Zheng, Rotor dynamics design of rotating machinery, Tsinghua University Press, Beijing, 2015 [Google Scholar]
  15. X.G. Gao Ying, Particle swarm optimization in bionic intelligent computing and its application, Science Press, Beijing, 2018 [Google Scholar]
  16. V.N. Constantinescu, Gas lubrication, The Research Committee on Lubrication of the ASME, New York, 1969 [Google Scholar]
  17. L. San Andres, K. Ryu, T.H. Kim, Thermal management and rotordynamic performance of a hot rotor-gas foil bearings system-part I: measurements, J. Eng. Gas. Turb. Power Trans. ASME 133 , 6 (2011) [Google Scholar]
  18. J.L. Cheng, S. Ronghua, L. Fang, Cognitive computing and multi-objective optimization, Science Press, Beijing, 2017 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.