Open Access
Issue
Mechanics & Industry
Volume 22, 2021
Article Number 21
Number of page(s) 13
DOI https://doi.org/10.1051/meca/2021024
Published online 01 April 2021
  1. S.C. Pont, A.M.L. Kappers, J.J. Koenderink, Similar mechanisms underlie curvature comparison by static and by dynamic touch, Percept. Psychophys. 61, 874–894 (1999) [PubMed] [Google Scholar]
  2. M.W.A. Wijntjes, A. Sato, V. Hayward, A.M.L. Kappers, Local surface orientation dominates haptic curvature discrimination, IEEE Trans. Haptics 2, 94–102 (2009) [PubMed] [Google Scholar]
  3. H. Dostmohamed, V. Hayward, Trajectory of contact region on the fingerpad gives the illusion of haptic shape, Exp. Brain Res. 164, 387–394 (2005) [Google Scholar]
  4. G. Cini, A. Frisoli, S. Marcheschi, F. Salsedo, M. Bergamasco, A novel fingertip haptic device for display of local contact geometry, in: First Joint Eurohaptics Conf. and Symp. Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC '05), 2005, pp. 602–605 [Google Scholar]
  5. M. Gabardi, M. Solazzi, D. Leonardis, A. Frisoli, A new wearable fingertip haptic interface for the rendering of virtual shapes and surface features, in: IEEE Haptics Symp. 2016, pp. 140–146 [Google Scholar]
  6. M. Memeo, L. Brayda, Mind the bump: effect of geometrical descriptors on the perception of curved surfaces with a novel tactile mouse, Haptics: Perception, Devices, Control, and Applications, PT II: Lecture Notes in Computer Science 9775, 438–448 (2016) [Google Scholar]
  7. H. Benko, C. Holz, M. Sinclair, E. Ofek, Normal Touch and Texture Touch: High-fidelity 3D haptic shape rendering on handheld virtual reality controllers, in: Annu. ACM Symp. User Interface Software & Technology, 2016, pp. 717–728 [Google Scholar]
  8. A.G. Perez, D. Lobo, F. Chinello, G. Cirio, M. Malvezzi, J.S. Martin, D. Prattichizzo, M.A. Otaduy, Optimization-based wearable tactile rendering, IEEE Trans. Haptics 10, 254–264 (2017) [PubMed] [Google Scholar]
  9. S.C. Kim, B.K. Han, D.S. Kwon, Haptic rendering of 3D geometry on 2D touch surface based on mechanical rotation, IEEE Trans. Haptics 11, 140–145 (2018) [PubMed] [Google Scholar]
  10. M. Solazzi, A. Frisoli, M. Bergamasco, Design of a cutaneous fingertip display for improving haptic exploration of virtual objects, in: 19th International Symposium in Robot and Human Interactive Communication, 2010, pp. 1–6 [Google Scholar]
  11. T. Zeng, F. Giraud, B. Lemaire-Semail, M. Amberg, Contribution of slip cue to curvature perception through active and dynamic touch, IEEE Trans. Haptics 6, 408–416 (2013) [PubMed] [Google Scholar]
  12. W.M.B. Tiest, A.M.L. Kappers, Analysis of haptic perception of materials by multidimensional scaling and physical measurements of roughness and compressibility, Acta Psychol. 121, 1–20 (2006) [Google Scholar]
  13. M.D. Bartolomeo, F. Morelli1, D. Tonazzi, F. Massi, Y. Berthier, Investigation of the role of contact-induced vibrations in tactile discrimination of textures, Mech. Ind. 18, 404 (2017) [Google Scholar]
  14. D. Picard, C. Dacremont, D. Valentin, A. Giboreau, Perceptual dimensions of tactile textures, Acta Psychol. 114, 165–184 (2003) [Google Scholar]
  15. C. Tymms, D. Zorin, E.P. Gardner, Tactile perception of the roughness of 3-D-printed textures, J. Neurophysiol. 119, 862–876 (2018) [Google Scholar]
  16. W. Hassan, A. Abdulali, S. Jeon, Authoring new haptic textures based on interpolation of real textures in affective space, IEEE Trans. Ind. Electron. 67, 667–676 (2020) [Google Scholar]
  17. K.O. Johnson, The roles and functions of cutaneous mechanoreceptors, Curr. Opin. Neurobiol. 11, 455–461 (2001) [CrossRef] [PubMed] [Google Scholar]
  18. K.O. Johnson, T. Yoshioka, F. Vega-Bermudez, Tactile functions of mechanoreceptive afferents innervating the hand, J. Clin. Neurophysiol. 17, 539–558 (2000) [Google Scholar]
  19. N. Besse, S. Rosset, J.J. Zarate, E. Ferrari, L. Brayda, H. Shea, Understanding graphics on a scalable latching assistive haptic display using a shape memory polymer membrane, IEEE Trans. Haptics 11, 30–38 (2018) [PubMed] [Google Scholar]
  20. M. Biet, F. Giraud, B. Lemaire-Semail, Squeeze film effect for the design of an ultrasonic tactile plate, IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control 54, 2678–2688 (2007) [Google Scholar]
  21. I. Poupyrev, O. Bau, A. Israr, C. Harrison, Electrovibration for touch surfaces, United States Patent, no. US 9501145B2, 2016. [Google Scholar]
  22. M.E. Altinsoy, S. Merchel, Electrotactile feedback for handheld devices with touch screen and simulation of roughness, IEEE Trans. Haptics 5, 6–13 (2012) [PubMed] [Google Scholar]
  23. K. Jun, J. Kim, Il-K. Oh, An electroactive and transparent haptic interface utilizing soft elastomer actuators with silver nanowire electrodes.Small (Weinheim an der Bergstrasse, Germany), pp. e1801603, 2018 [Google Scholar]
  24. S. Park, S. Park, B. Park, S. Ryu, S.M. Jeong, K. Kyung, A soft and transparent visuo-haptic interface pursuing wearable Devices, IEEE Trans. Ind. Electron. 67, 717–724 (2020) [Google Scholar]
  25. C. Pacchierotti, D. Prattichizzo, K.J. Kuchenbecker, Cutaneous feedback of fingertip deformation and vibration for palpation in robotic surgery, IEEE Trans. Biomed. Eng. 63, 278–287 (2016) [Google Scholar]
  26. Z. Kang, K. Kim, Multimodal perception study on virtual 3-D curved textures with vision and touch for interactive multimedia systems, Multimed. Tools Appl. 77, 2209–2223 (2018) [Google Scholar]
  27. K. Zhang, E.J. Gonzalez, J. Guo, S. Follmer, Design and analysis of high-resolution electrostatic adhesive brakes towards static refreshable 2.5D tactile shape display, IEEE Trans. Haptics (2020). DOI: 10.1109/TOH.2019.2940219 [Google Scholar]
  28. T. Zeng, F. Giraud, B. Lemaire-Semail, M. Amberg, Analysis of a new haptic display coupling tactile and kinesthetic feedback to render texture and shape, in: Haptics: Generating and Perceiving Tangible Sensations. EuroHaptics 2010. Lecture Notes in Computer Science, vol. 6192, 2010, pp. 87–93 [Google Scholar]
  29. T. Zeng, Conception et contrôle d'un périphérique dédié à la simulation couplée kinesthésique et tactile, PhD thesis, University of Lille 1, France, 2012 [Google Scholar]
  30. M. Wiesendanger, Squeeze film air bearings using piezoelectric bending elements, Ecole Polytechnique Fdrale de Lausanne, Lausanne: EPFL, 2001 [Google Scholar]
  31. L. Winfield, J. Glassmire, J.E. Colgate, M.A. Peshkin (editors), T-pad: Tactile pattern display through variable friction reduction. in: 2nd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, 2007, pp. 421–426 [Google Scholar]
  32. E. Vezzoli, T. Sednaoui, M. Amberg, F. Giraud, B. Lemaire-Semail, Texture rendering strategies with a high fidelity − capacitive visual-haptic friction control device. in: International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, 2016, pp. 251–260 [Google Scholar]
  33. G. Gescheider, Psychophysics: the fundamentals, 3rd edn. Lawrence Erlbaum Associates, 1997 [Google Scholar]
  34. R.C. Oldfield, The assessment and analysis of handedness: the Edinburgh inventory, Neuropsychologia 9, 97–113 (1971) [CrossRef] [PubMed] [Google Scholar]
  35. I. Gordon, V. Morison, The haptic perception of curvature, Perception and Psychophysics 31, 446–450 (1982) [Google Scholar]
  36. B.J. Van der Horst, A.M.L. Kappers, Haptic curvature comparison of convex and concave shapes, Perception 37, 1137–1151 (2008) [PubMed] [Google Scholar]
  37. D.M. Green, J.A. Swets, Signal Detection Theory and Psycho-physics, 3rd edn. Peninsula Pub., 1988 [Google Scholar]
  38. M. Biet, Conception et controle d'actionneurs electro-actifs dedies a la stimulation tactile, PhD dissertation, Laboratory of Electrical Engineering and Power Electronics, University of Lille 1, France, 2008 [Google Scholar]
  39. R.H. Mcallister-Williams, D. Bertrand, H. Rollema, R.S. Hurs, L.R.M. Bevilaqua, Point of Subjective Equality. in: I.P. Stolerman (Eds.), Encyclopedia of Psychopharmacology, Springer, Berlin, Heidelberg, 2010 [Google Scholar]
  40. I. Poupyrev, S. Maruyama, Tactile interfaces for small touch screens. In: Symposium on User Interface Software and Technology, UIST 2003, pp. 217–220, 2003 [Google Scholar]
  41. Immersion. http://www.immersion.com [Google Scholar]
  42. T. Kaaresoja, L. Brown, J. Linjama, Snap-crackle-pop: tactile feedback for mobile touch screens. in: Eurohaptics 2006, 2006, pp. 565–566 [Google Scholar]
  43. G. Robles-De-La-Torre, V. Hayward, Force can overcome object geometry in the perception of shape through active touch, Nature 412, 445–448 (2001) [PubMed] [Google Scholar]
  44. K. Drewing, M.O. Ernst, Integration of force and position cues for shape perception through active touch, Brain Research 1078, 92–100 (2006) [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.