Open Access
Mechanics & Industry
Volume 22, 2021
Article Number 13
Number of page(s) 16
Published online 08 March 2021
  1. S.A.G. Nassab, Inertia effect on the thermohydrodynamic characteristics of journal bearings, Proc. IMechE Part J J. Eng. Tribol. 219 , 459–467 (2005) [Google Scholar]
  2. R.T. Lee, C.H. Hsu, W.F. Kuo, Multilevel solution for thermal elastohydrodynamic lubrication of rolling/sliding circular contacts, Tribol. Int. 28 , 541–552 (1995) [Google Scholar]
  3. F. Guo, P. Yang, P.L. Wong, On the thermal elastohydrodynamic lubrication in opposite sliding circular contacts, Tribol. Int. 34 , 443–452 (2001) [Google Scholar]
  4. X.L. Liu, P.R. Yang, Influence of solid body temperature on the thermal EHL behavior in circular contacts, ASME J. Tribol. 130 , 125–128 (2008) [Google Scholar]
  5. H.J. Kim, P. Ehret, D. Dowson, C.M. Taylor, Thermal elastohydrodynamic analysis of circular contacts: part 2: non-Newtonian model, Proc. IMechE Part J J. Eng. Tribol. 215 , 353–362 (2001) [Google Scholar]
  6. P. Kumar, M.M. Khonsari, S. Bair, Full EHL simulations using the actual Ree-Eyring model for shear-thinning lubricants, ASME J. Tribol. 130 , 011802-1– 011802-6 (2009) [Google Scholar]
  7. P.M. Lugt, G.E. Morales-Espejel, A review of elasto- hydrodynamic lubrication theory, Tribol. Trans. 54 , 470–496 (2011) [Google Scholar]
  8. W. Hirst, A.J. Moore, Non-Newtonian behavior in elasto- hydrodynamic lubrication, Proc. R. Soc. Lond. A 337 , 101–121 (1974) [Google Scholar]
  9. K.L. Johnson, J.L. Tevaarwerk, Shear behaviour of elastohydrodynamic oil films, Proc. R. Soc. Lond. A 356 , 215–236 (1977) [Google Scholar]
  10. M. Kaneta, J.L. Cui, P.R. Yang, I. Krupka, M. Hartl, Influence of thermal conductivity of contact bodies on perturbed film caused by a ridge and groove in point EHL contacts, Tribol. Int. 100 , 84–98 (2016) [Google Scholar]
  11. J.L. Cui, P.R. Yang, M. Kaneta, I. Krupka, Numerical study on the interaction of transversely oriented ridges in thermal elastohydrodynamic lubrication pint contacts using the eyring sear-tinning model, Proc. IMechE Part J J. Eng. Tribol. 231 , 93–106 (2017) [Google Scholar]
  12. Z.L. Xiao, X. Shi, Investigation on stiffness and damping of transient non-Newtonian thermal elastohydrodynamic point contact for crowned herringbone gears, Tribol. Int. 137 , 102–112 (2019) [Google Scholar]
  13. X.J. Shi, Y.Q. Wang, Thermal elastohydrodynamic lubrication analysis on journal bearing lubricated by water-based ferrofluid with inertial force, Lubr. Eng. 37 , 39–42 (2012) [Google Scholar]
  14. N. Dong, Y.B. Zhang, Y.Q. Wang, Q. Liu, X.B. Huang, Analysis of the thermal elastohydrodynamic lubrication property of water lubrication tenmat bearing with considering the liquid inertial force, J. Mech. Trans. 40 , 105–109 (2016) [Google Scholar]
  15. B.H. Liu, The elastohydrodynamic lubrication analysis of emulsion-lubricated composite plastic bearing, Master's thesis, Qingdao University of Technology, Qingdao, China, 2009 [Google Scholar]
  16. X.M. Fan, Numerical simulation study on lubrication performance of water lubricated ceramic sliding bearing, Master's thesis, Qingdao University of Technology, Qingdao, China, 2016 [Google Scholar]
  17. X.J. Lin, X.J. Yi, Y.Q. Wang, Numerical analysis of the thermal micro-EHL problem of line contact with inertial force, Lubr. Eng. 5 , 49–55 (2004) [Google Scholar]
  18. F.M. Meng, R. Zhou, T. Davis, J. Cao, Q. Wang, D. Hua, J. Liu, Study on effect of dimples on friction of parallel surfaces under different sliding conditions, Appl. Surf. Sci. 256 , 2863–2875 (2010) [Google Scholar]
  19. F.M. Meng, On influence of cavitation in lubricant upon tribological performances of textured surfaces, Opt. Laser. Technol. 48 , 422–431 (2013) [Google Scholar]
  20. P.R. Yang, Numerical analysis of fluid lubrication, National Defense Industry Press, Beijing, 1998 [Google Scholar]
  21. P.R. Yang, S.Z. Wen, A generalized reynolds equation for non-Newtonian thermal elastohydrodynamic lubrication, ASME J. Tribol. 112 , 631–636 (1990) [Google Scholar]
  22. S.B. Liu, Q. Wang, G. Liu, A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses, Wear 243 , 101–111 (2000) [Google Scholar]
  23. S.B. Liu, D. Hua, W.W. Chen, Q. Wang, Tribological modeling: application of fast fourier transform, Tribol. Int. 40 , 1284–1293 (2007) [Google Scholar]
  24. M. Kaneta, T. Yamada, J. Wang, Micro-elastohydrodynamic lubrication of simple sliding elliptical contacts with sinusoidal roughness, Proc. IMechE Part J J. Eng. Tribol. 222 , 395–405 (2008) [Google Scholar]
  25. X.L. Liu, M. Jiang, P.R. Yang, M. Kaneta, Non-Newtonian thermal analyses of point EHL contacts using the eyring model. ASME J. Tribol. 127 , 70–81 (2005) [Google Scholar]
  26. B.J. Hamrock, D. Dowson, Isothermal elastohydrodynamic lubrication of point contacts part II-ellipticity parameter results, J. Lubr. Technol. 98 , 375–381 (1976) [Google Scholar]
  27. Y.G. Zhang, W.Z. Wang, H. Liang, Z.Q. Zhao, Layered oil slip model for investigation of film thickness behaviours at high speed conditions, Tribol. Int. 131 , 137–147 (2019) [Google Scholar]
  28. C. Hooke, Surface roughness modification in EHL line contacts-the effect of roughness wavelength, orientation and operating conditions, in: Lubrication at the Frontier The Role of the Interface and Surface Layers in the Thin Film and Boundary Regime, Proceedings of the 25th Leeds-Lyon Symposium on Tribology, 1999, vol. 36, pp. 193–202 [Google Scholar]
  29. J. Hooke, C.H. Venner, Surface roughness attenuation in line and point contacts, Proc. Inst. Mech. Eng. 214 , 439–444 (2000) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.