Open Access
Mechanics & Industry
Volume 22, 2021
Article Number 35
Number of page(s) 13
Published online 28 May 2021
  1. J. Zhao, I. Linnett, L. McLean, Stability and bifurcation of unbalanced response of a squeeze film damped flexible rotor, J. Tribol. 116, 361–368 (1994) [Google Scholar]
  2. J. Inayat-Hussain, H. Kanki, N. Mureithi, On the bifurcations of a rigid rotor response in squeeze-film dampers, J. Fluids Struct. 17, 433–459 (2003) [Google Scholar]
  3. H. Ma, F. Yin, Y. Guo, X. Tai, B. Wen, A review on dynamic characteristics of blade–casing rubbing, Nonlinear Dyn. 84, 437–472 (2016) [Google Scholar]
  4. M. Dakel, S. Baguet, R. Dufour, Steady-state dynamic behavior of an on-board rotor under combined base motions, J. Vib. Control 20, 2254–2287 (2014) [CrossRef] [Google Scholar]
  5. M. Dakel, S. Baguet, R. Dufour, Nonlinear dynamics of a support-excited flexible rotor with hydrodynamic journal bearings, J. Sound Vib. 333, 2774–2799 (2014) [CrossRef] [Google Scholar]
  6. Q. Han, F. Chu, Dynamic behaviors of a geared rotor system under time-periodic base angular motions, Mech. Mach. Theory 78, 1–14 (2014) [CrossRef] [Google Scholar]
  7. Q. Han, F. Chu, Parametric instability of flexible rotor-bearing system under time-periodic base angular motions, Appl. Math. Model. 39, 4511–4522 (2015) [CrossRef] [MathSciNet] [Google Scholar]
  8. R. Bouziani, N. Ouelaa, Simulation of the dynamic behavior of a rotor subject to base motion under variable rotational speed, Mech. Ind. 18, 308 (2017) [CrossRef] [Google Scholar]
  9. A. Saimi, A. Hadjoui, An engineering application of the hp version of the finite elements method to the dynamics analysis of a symmetrical on-board rotor, Eur. J. Comput. Mech. 25, 388–416 (2016) [CrossRef] [Google Scholar]
  10. R. Wang, X. Guo, Y. Wang, Nonlinear analysis of rotor system supported by oil lubricated bearings subjected to base movements, Proc. Inst. Mech. Eng. C 230, 543–558 (2016) [CrossRef] [Google Scholar]
  11. M.R. Reddy, J. Srinivas, Vibration analysis of a support excited rotor system with hydrodynamic journal bearings, Proc. Eng. 144, 825–832 (2016) [CrossRef] [Google Scholar]
  12. Z. Liu, Z. Liu, Y. Li, G. Zhang, Dynamics response of an on-board rotor supported on modified oil-film force considering base motion, Proc. Inst. Mech. Eng. C 232, 245–259 (2018) [CrossRef] [Google Scholar]
  13. F. Vicencio, E.F. Cruz, A high order nonlinear study to evaluate the seismic response of rotating machines–structure–soil foundation systems, J. Earthquake Eng. 0, 1–33 (2019) [Google Scholar]
  14. H. Zhu, W. Chen, R. Zhu, J. Gao, M. Liao, Study on the dynamic characteristics of a rotor bearing system with damping rings subjected to base vibration, J. Vib. Eng. Technolog. 8, 121–132 (2020) [CrossRef] [Google Scholar]
  15. T.d.P. Sales, E. Spuldaro, L.F. Damy, D.A. Rade, Dynamic modeling of flexible rotors mounted on an elastic base undergoing arbitrary attitude motion, in: International Conference on Rotor Dynamics. (Springer, 2018), pp. 562–576 [Google Scholar]
  16. T. Soni, J.K. Dutt, A. Das, Parametric stability analysis of active magnetic bearing-supported rotor system with a novel control law subject to periodic base motion, IEEE Trans. Ind. Electr. 67, 1160–1170 (2019) [Google Scholar]
  17. T. Soni, A. Das, J. Dutt, Active vibration control of ship mounted flexible rotor-shaft-bearing system during seakeeping, J. Sound Vib. 467, 115046 (2020) [Google Scholar]
  18. H. Phadatare, B. Choudhary, B. Pratiher, Evaluation of nonlinear responses and bifurcation of a rotor-bearing system mounted on moving platform, Nonlinear Dyn. 90, 493–511 (2017) [Google Scholar]
  19. M. Shahgholi, G. Payganeh, Forced vibrations of nonlinear symmetrical and asymmetrical rotating shafts mounted on a moving base, ZAMM J. Appl. Math. Mech. 99, e201700097 (2019) [Google Scholar]
  20. Y. Yi, Z. Qiu, Q. Han, The effect of time-periodic base angular motions upon dynamic response of asymmetric rotor systems, Adv. Mech. Eng. 10, 1687814018767172 (2018) [Google Scholar]
  21. X. Qiu, Q. Han, F. Chu, Dynamic modeling and analysis of the planetary gear under pitching base motion, Int. J. Mech. Sci. 141, 31–45 (2018) [Google Scholar]
  22. M. Sousa, V. Del Claro, A. Cavalini, V. Steffen, Numerical investigation on the dynamic behavior of an onboard rotor system by using the fem approach, J. Braz. Soc. Mech. Sci. Eng. 39, 2447–2458 (2017) [Google Scholar]
  23. C.M. Stanica, M.V. Predoi, I. Stroe, Study of rotating machineries in a non-inertial reference frame subjected to rotations, Romanian J. Acoustics Vib. 16, 125–136 (2019) [Google Scholar]
  24. Y. Han, M. Li, Nonlinear dynamic characteristics of marine rotor-bearing system under heaving motion, Shock Vib. 2019 (2019) [Google Scholar]
  25. W. Zhao, M. Li, Y. Liu, Nonlinear dynamics of marine rotor system coupled with air bag-floating raft subjected to the basement excitations in lateral directions, Shock Vib. 2020 (2020) [Google Scholar]
  26. A.S. Lee, B.O. Kim, Y.-C. Kim, A finite element transient response analysis method of a rotor-bearing system to base shock excitations using the state-space newmark scheme and comparisons with experiments, J. Sound Vib. 297, 595–615 (2006) [CrossRef] [Google Scholar]
  27. M. Duchemin, A. Berlioz, G. Ferraris, Dynamic behavior and stability of a rotor under base excitation, J. Vib. Acoustics 128, 576–585 (2006) [CrossRef] [Google Scholar]
  28. N. Driot, C.H. Lamarque, A. Berlioz, Theoretical and experimental analysis of a base-excited rotor, J. Comput. Nonlinear Dyn. 1, 257–263 (2006) [Google Scholar]
  29. M. Sousa, V. Del Claro, A. Cavalini, V. Steffen, Experimental validation of an onboard rotor fe model, in: Proceedings of the 24th ABCM International Congress of Mechanical Engineering, COBEM, Curitiba, Parana, Brazil (2017) [Google Scholar]
  30. L. Chen, J. Wang, Q. Han, F. Chu, Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions, J. Sound Vib. 404, 58–83 (2017) [Google Scholar]
  31. C. Jarroux, J. Mahfoud, R. Dufour, F. Legrand, B. Defoy, T. Alban, Dynamic behavior of a rotor-AMB system due to strong base motions, in International Conference on Rotor Dynamics (Springer, 2018), pp. 340–349 [Google Scholar]
  32. Y. Briend, M. Dakel, E. Chatelet, M.-A. Andrianoely, R. Dufour, S. Baudin, Effect of multi-frequency parametric excitations on the dynamics of on-board rotor-bearing systems, Mech. Mach. Theory 145, 103660 (2020) [Google Scholar]
  33. T. Zheng, N. Hasebe, Calculation of equilibrium position and dynamic coefficients of a journal bearing using free boundary theory, ASME J. Tribol. 122, 616–621 (2000) [Google Scholar]
  34. Y. Briend, E. Chatelet, R. Dufour, F. Legrand, S. Baudin, Identification of real translational and rotational displacements of six-axial shakers with only six measured linear accelerations, Mech. Syst. Signal Process. 154, 107584 (2021) [Google Scholar]
  35. G. Mogenier, T. Baranger, G. Ferraris, R. Dufour, L. Durantay, A criterion for mode shape tracking: application to Campbell diagrams, J. Vibrat. Control 20, 179–190 (2014) [Google Scholar]
  36. P. Goldman, A. Muszynska, Application of full spectrum to rotating machinery diagnostics, Orbit 20, 17–21 (1999) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.