Open Access
Mechanics & Industry
Volume 22, 2021
Article Number 47
Number of page(s) 11
Published online 17 November 2021
  1. E. Wildhaber, Helical gearing, patent US 1601750, 1926 [Google Scholar]
  2. M.L. Novikov, Gear transmissions and cam mechanisms with a point meshing system, patent SU109113, 1956 (in Russian) [Google Scholar]
  3. F.L. Litvin, C.B. Tsay, Helical gears with circular arc teeth: simulation of conditions of meshing and bearing contact, J. Mech. Trans. Autom. 107, 556–564 (1985) [CrossRef] [Google Scholar]
  4. A. Dyson, H.P. Evans, R.W. Snidle, Wildhaber-Novikov circular arc gears: geometry and kinematics, Proc. R. Soc. A 403, 313–340 (1986) [Google Scholar]
  5. V.N. Kudrjavcev, J.A. Derzhavec, E.G. Gluharev, Design and calculation of reduction gears, Mashinostroenie, Leningrad, 1971 (in Russian) [Google Scholar]
  6. F.L. Litvin, J. Lu, Computerized simulation of generation, meshing and contact of double circular-arc helical gears, Math. Comput. Model. 18, 31–47 (1993) [CrossRef] [Google Scholar]
  7. Y. Ariga, S. Nagata, Load capacity of a new W-N gear with basic rack of combined circular and involute profile, J. Mech. Trans. Autom. 107, 565–572 (1985) [CrossRef] [Google Scholar]
  8. C.B. Tsay, Z.H. Fong, Computer simulation and stress analysis of helical gears with pinion circular arc teeth and gear involute teeth, Mech. Mach. Theory 26, 145–154 (1991) [CrossRef] [Google Scholar]
  9. Q. Luo, H. Li, J. Wang, Y. Zhang, H. Huang, Transmission of point-line meshing gear, The Int. J. Adv. Manufactur. Technol. 33, 845–855 (2007) [CrossRef] [Google Scholar]
  10. Y.C. Wu, K.Y. Chen, C.B. Tsay, Y. Ariga, Contact characteristics of circular-arc curvilinear tooth gear drives, J. Mech. Des. 131, 181003 (2009) [Google Scholar]
  11. S.C. Yang, Mathematical model of a stepped triple circular-arc gear, Mech. Mach. Theory 44, 1019–1031 (2009) [CrossRef] [Google Scholar]
  12. H. Zhang, L. Hua, X. Han, Computerized design and simulation of meshing of modified double circular-arc helical gears by tooth end relief with helix, Mech. Mach. Theory 45, 46–64 (2010) [CrossRef] [Google Scholar]
  13. X. Chen, Y. Liu, J. Xing, S. Lin, W. Xu, The parametric design of double-circular-arc tooth profile and its influence on the functional backlash of harmonic drive, Mech. Mach. Theory 73, 1–24 (2014) [CrossRef] [Google Scholar]
  14. T. Komori, Y. Ariga, S. Nagata, A new gears profile having zero relative curvature at many contact points (logiX tooth profile), J. Mech. Des. 112, 430–436 (1990) [CrossRef] [Google Scholar]
  15. C. Lee, H.H. Lin, F.B. Oswald, D.P. Townsend, Influence of linear profile modification and loading conditions on the dynamic tooth load and stress of high-contact-ratio spur gears, J. Mech. Des. 113, 473–480 (1991) [CrossRef] [Google Scholar]
  16. M.H. Tsai, Y.C. Tsai, Design of high-contact-ratio spur gears using quadratic parametric tooth profiles, Mech. Mach. Theory 33, 551–564 (1998) [CrossRef] [Google Scholar]
  17. N. Yildirim, R.G. Munro, A systematic approach to profile relief design of low and high contact ratio spur gears, Proc. Inst. Mech. Eng. C 213, 551–562 (1999) [CrossRef] [Google Scholar]
  18. A. Kapelevich, Geometry and design of involute spur gears with asymmetric teeth, Mech. Mach. Theory 35, 117–130 (2000) [CrossRef] [Google Scholar]
  19. T. Yeh, D.C.H. Yang, S.H. Tong, Design of new tooth profiles for high-load capacity gears, Mech. Mach. Theory 36, 1105–1120 (2001) [CrossRef] [Google Scholar]
  20. S. Barone, Gear geometric design by B-spline curve fitting and sweep surface modelling, Eng. Comput. 17, 66–74 (2001) [CrossRef] [Google Scholar]
  21. Z.H. Fong, T.W. Chiang, C.W. Tsay, Mathematical model for parametric tooth profile of spur gear using line of action, Math. Comput. Model. 36, 603–614 (2002) [CrossRef] [Google Scholar]
  22. S. Luo, Y. Wu, J. Wang, The generation principle and mathematical models of a novel cosine gear drive, Mech. Mach. Theory 43, 1543–1556 (2008) [CrossRef] [Google Scholar]
  23. G. Hlebanja, S-gears for wind power turbine operation conditions, Mach. Des. 4, 123–130 (2012) [Google Scholar]
  24. J. Wang, L. Hou, S. Luo, R.Y. Wu, Active design of tooth profiles using parabolic curve as the line of action, Mech. Mach. Theory 67, 47–63 (2013) [CrossRef] [Google Scholar]
  25. L. Liu, F. Meng, J. Ni, A novel non-involute gear designed based on control of relative curvature, Mech. Mach. Theory 140, 144–158 (2019) [CrossRef] [Google Scholar]
  26. Y. Wang, S. Ren, Y. Li, Design and manufacturing of a novel high contact ratio internal gear with a circular arc contact path, Int. J. Mech. Sci. 153–154, 143–153 (2019) [Google Scholar]
  27. I.R. Shabanov, On the gear transmission with a conchoidal path of contact, Nadyozhnost i Kachestvo Zubchatych Peredach 18-67-106, 1–8 (1967) (in Russian) [Google Scholar]
  28. V.P. Shishov, P.L. Nosko, O.A. Revyakina, Cylindrical transmissions with arch teeth, Publishing House of Volodymyr Dahl East Ukrainian National University, Lugansk, 2004 (in Russian) [Google Scholar]
  29. H.J. Watson, Modern Gear Production, Pergamon Press, Oxford (1970) [Google Scholar]
  30. V.P. Shishov, O.A. Revyakina, P.N. Tkach, On the character of teeth contact in cylindrical transmissions, Bull. Natl. Tech. Univ. 21, 110–119 (2007) (in Russian) [Google Scholar]
  31. H. Linke, J. Börner, R. Heß, Cylindrical Gears: Calculation, Materials, Manufacturing, Carl Hanser Verlag, Munich (2016) [CrossRef] [Google Scholar]
  32. Y.N. Drozdov, V.I. Smirnov, Study of the coefficient of sliding friction for high contact parameters, Vestnik Mashinostroeniya 6, 19–23 (1977) (in Russian) [Google Scholar]
  33. V. Onishchenko, Tooth wear modeling and prognostication parameters of engagement of spur gear power transmissions, Mech. Mach. Theory 43, 1639–1664 (2008) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.