Open Access
Issue
Mechanics & Industry
Volume 22, 2021
Article Number 42
Number of page(s) 11
DOI https://doi.org/10.1051/meca/2021041
Published online 21 September 2021
  1. R.L. Bisplinghoff, H. Ashley and R.L. Halfman, Aeroelasticity (Courier Corporation, 1996) [Google Scholar]
  2. C. Scruton and N. Lambourne, Similarity Requirements for Flutter Model Testing. Manual on Aeroelasticity, AGARD Vol. IV, E.C. Pike (1971), pp. 1–26, Chap 6 [Google Scholar]
  3. M. French, An application of structural optimization in wind tunnel model design, in 31st Structures, Structural Dynamics and Materials Conference, American Institute of Aeronautics and Astronautics, Long Beach, California, 1990 [Google Scholar]
  4. M. French, F.E. Eastep, Aeroelastic model design using parameter identification, J. Aircraft 33, 198–202 (1996) [Google Scholar]
  5. P. Pereira, L. Almeida, A. Suleman, V. Bond, R. Canfield, M. Blair, Aeroelastic scaling and optimization of a joined-wing aircraft concept, in 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, Honolulu, Hawaii (2007) [Google Scholar]
  6. V.L. Bond, R.A. Canfield, A. Suleman, M. Blair, Aeroelastic scaling of a joined wing for nonlinear geometric stiffness, AIAA J. 50, 513–522 (2012) [Google Scholar]
  7. J. Richards, A. Suleman, R. Canfield, M. Blair, Design of a scaled RPV for investigation of gust response of joined-wing sensorcraft, in 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, Palm Springs, California, 2009 [Google Scholar]
  8. A. Ricciardi, R. Canfield, M. Patil, N. Lindsley, Nonlinear Aeroelastic Scaling of a Joined Wing Aircraft, in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, American Institute of Aeronautics and Astronautics, Honolulu, Hawaii, 2012 [Google Scholar]
  9. A.P. Ricciardi, C.A.G. Eger, R.A. Canfield, M.J. Patil, Nonlinear aeroelastic-scaled-model optimization using equivalent static loads, J. Aircraft 51, 1842–1851 (2014) [Google Scholar]
  10. Z. Wan, C.E.S. Cesnik, Geometrically nonlinear aeroelastic scaling for very flexible aircraft, AIAA J. 52, 2251–2260 (2014) [Google Scholar]
  11. A.P. Ricciardi, R.A. Canfield, M.J. Patil, N. Lindsley, Nonlinear aeroelastic scaled-model design, J. Aircraft 53, 20–32 (2016) [Google Scholar]
  12. J.M. Colomer, N. Bartoli, T. Lefebvre, S. Dubreuil, J. Martins, E. Benard, J. Morlier, Similarity maximization of a scaled aeroelastic flight demonstrator via multidisciplinary optimization, in 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, Grapevine, Texas, 2017 [Google Scholar]
  13. J.M. Colomer, N. Bartoli, T. Lefebvre, J.R. Martins, J. Morlier, An MDO-based methodology for static aeroelastic scaling of wings under non-similar flow, Struct. Multidiscipl. Optim. 63, 1045–1061 (2021). [Google Scholar]
  14. J.M. Colomer, N. Bartoli, T. Lefebvre, J. Morlier, Aeroelastic scaling of flying demonstrator: mode tracking technique, Mech. Ind. (2021). [Google Scholar]
  15. R. Cavallaro, L. Demasi, Challenges, ideas, and innovations of joined-wing configurations: a concept from the past, an opportunity for the future, Progr. Aerospace Sci. 87, 1–93 (2016) [Google Scholar]
  16. F. Afonso, J. Vale, E. Oliveira, F. Lau, A. Suleman, A review on non-linear aeroelasticity of high aspect-ratio wings, Progr. Aerospace Sci. 89, 40–57 (2017) [Google Scholar]
  17. C. Spada, F. Afonso, F. Lau, A. Suleman, Nonlinear aeroelastic scaling of high aspect-ratio wings, Aerospace Sci. Technol. 63, 363–371 (2017) [Google Scholar]
  18. A. De Gaspari, S. Ricci, A. Antunes, F. Odaguil, G. Rodrigues de Lima, Application of active camber morphing concept to a regional aircraft, in 22nd AIAA/ASME/AHS Adaptive Structures Conference, 2014, p. 1259 [Google Scholar]
  19. A. Pontillo, D. Hayes, G.X. Dussart, G.E. Lopez Matos, M.A. Carrizales, S.Y. Yusuf, M.M. Lone, Flexible high aspect ratio wing: low cost experimental model and computational framework, in 2018 AIAA Atmospheric Flight Mechanics Conference, American Institute of Aeronautics and Astronautics, Kissimmee, Florida, 2018 [Google Scholar]
  20. J. Vassberg, M. Dehaan, M. Rivers, R. Wahls, Development of a common research model for applied CFD validation studies, in 26th AIAA Applied Aerodynamics Conference, 2008, p. 6919 [Google Scholar]
  21. T. Pires, Linear aeroelastic scaling of a joined wing 2014 [Google Scholar]
  22. MSC. Nastran Aeroelastic Analysis User’s Guide, MSC. Software Corporation, 2 MacArthur Place Santa Ana, CA 92707 USA, 2004 [Google Scholar]
  23. C. Geuzaine, J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Methods Eng. 79, 1309–1331 (2009) [Google Scholar]
  24. T.C.S. Rendall, C.B. Allen, Unified fluid-structure interpolation and mesh motion using radial basis functions, Int. J. Numer. Methods Eng. 74, 1519–1559 (2008) [Google Scholar]
  25. M.J. Powell, A direct search optimization method that models the objective and constraint functions by linear interpolation, in Advances in optimization and numerical analysis. Springer 51–67 (1994) [Google Scholar]
  26. T.R. Brooks, G.K.W. Kenway, J.R.R.A. Martins, Benchmark aerostructural models for the study of transonic aircraft wings, AIAA J., 56, 2840–55, (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.