Open Access
Mechanics & Industry
Volume 22, 2021
Article Number 41
Number of page(s) 9
Published online 20 September 2021
  1. Y. Suzuki, Y. Miki, M. Edamoto, M. Honzumi, A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications, J. Micromech. Microeng. 20, 104002 (2010) [Google Scholar]
  2. J. Zhu, X. Liu, Q. Shi, T. He, Z. Sun, X. Guo, W. Liu, O. Sulaiman, B. Dong, C. Lee, Development trends and perspectives of future sensors and MEMS/NEMS, Micromachines 11, 541 (2020) [Google Scholar]
  3. J. Zhu, M. Zhu, Q. Shi, W. Feng, L. Long, B. Dong, A. Haroun, Y. Yang, P. Vachon, X. Guo, T. He, C. Lee, Progress in TENG technology − a journey from energy harvesting to nanoenergy and nanosystem (NENS), Ecomat. 2, 1–45 (2020) [Google Scholar]
  4. F. Shirazi, J. Velni, K. Grigoriadis, An LPV design approach for voltage control of an electrostatic MEMS actuator, J. Microelectrmech. Syst. 20, 302–311 (2011) [Google Scholar]
  5. J. Zhu, W. Song, R. Huang, Modulated pencil-drawn U-shaped piezoresistive graphite on compound fibers and its application for wind sensing, J. Electr. Mater. 47, 6518–6524 (2018) [Google Scholar]
  6. Y. Kim, S. Cho, H. Dong, J. Lee, K. Baek, Single chip dual plate capacitive proximity sensor with high noise immunity, IEEE Sensors J. 14, 309–310 (2014) [Google Scholar]
  7. G. Caruso, Broadband energy harvesting from vibrations using magnetic transduction, J. Vib. Acoust. Trans. ASME 137, 064503 (2015) [Google Scholar]
  8. K. Fan, J. Chang, F. Chao, W. Pedrycz, Design and development of a multipurpose piezoelectric energy harvester, Energy Convers. Manag. 96, 430–439 (2015) [Google Scholar]
  9. J. Zhu, C. Chen, X. Guo, Suspended polytetrafluoroethylene nanostructure electret film in dual variable cavities for self-powered micro-shock sensing, Mater. Res. Express 6, 1–8 (2018) [Google Scholar]
  10. J. Zhu, X. Guo, D. Meng, M. Choi, I. Park, R. Huang, W. Song, A flexible comb electrode triboelectric-electret nanogenerator with separated microfibers for self-powered position, motion direction and acceleration tracking sensor, J. Mater. Chem. A 6, 16548–16555 (2018) [Google Scholar]
  11. J. Zhu, Y. Zhu, W. Song, H. Wang, M. Gao, M. Cho, I. Park, Zinc oxide enhanced piezoelectret polypropylene microfibers for mechanical energy harvesting, ACS Appl. Mater. Interfaces 10, 19940–19947 (2018) [PubMed] [Google Scholar]
  12. Z. Zeng, B. Ren, Q. Xu, D. Lin, W. Di, H. Luo, D. Wang, Excellent performances of energy Harvester using cantilever driving double-clamped 0.7Pb(Mg1/3Nb2/3)O-3-0.3PbTiO(3) plates and symmetric middle-stops, Appl. Phys. Lett. 107, 173502 (2015) [Google Scholar]
  13. J. Zhu, W. Song, MEMS fabrication and frequency sweep for suspending beam and plate electrode in electrostatic capacitor, Solid-state Electr. 139, 94–100 (2018) [Google Scholar]
  14. J. Zhu, H. Zhu, Bulk silicon micromachined suspended fixed-end SiO2 film capacitor for passive high-pass RC filter, Microsyst. Technolog. 23, 1–6 (2017) [Google Scholar]
  15. D. Galayko, A. Dudka, A. Karami, E. O'Riordan, E. Blokhina, O. Feely, P. Basset, Capacitive energy conversion with circuits implementing a rectangular charge-voltage cycle-part 1: analysis of the electrical domain, IEEE Trans. Circ. Syst. 62, 2652–2663 (2015) [Google Scholar]
  16. C. Chao, C. Chiu, C. Tsai, A novel method to predict the pull-in voltage in a closed form for micro-plates actuated by a distributed electrostatic force, J. Micromech. Microeng. 16, 986–998 (2006) [Google Scholar]
  17. B. Kim, H. Lee, Acoustic-thermal noise in a capacitive MEMS microphone, IEEE Sensors J. 15, 6853–6860 (2015) [Google Scholar]
  18. K. Yamamoto, T. Fujita, A. Badel, F. Formosa, K. Kanda, K. Maenaka, A design of mechanical frequency converter linear and non-linear spring combination for energy harvesting, PowerMEMS 557, 012065 (2014) [Google Scholar]
  19. S. Shaw, P. Holmes, A periodically forced piecewise linear oscillator, J. Sound Vibr. 90, 129–155 (1983) [Google Scholar]
  20. J. Qiu, Z. Feng, Parameter dependence of the impact dynamics of thin plates, Comput. Struct. 75, 491–506 (2000) [Google Scholar]
  21. A. Nayfeh, M. Younis, Dynamics of MEMS resonators under superharmonic and subharmonic excitations, J. Micromech. Microeng. 15, 1840–1847 (2005) [Google Scholar]
  22. J. Zhu, J. Lin, N. Yusek, M. Almasri, Z. Feng, Dynamic analysis and phenomena of MEMS capacitive power harvester subjected to low frequency excitation, Nonlinear Dyn. 79, 673–688 (2015) [Google Scholar]
  23. J. Zhu, N. Yuksek, M. Almasri, Z. Feng, Numerical modeling of dynamic response of miniature multi-impact electromagnetic device for low and wide range frequencies energy harvesting, Part C, J. Mech. Eng. Sci. 233, 2400–2409 (2019) [Google Scholar]
  24. J. Lin, J. Zhu, M. Sonje, Y. Chang, Z. Feng, M. Almasri, Two-cavity MEMS variable capacitor for power harvesting, J. Micromech. Microeng. 22, 6 (2012) [Google Scholar]
  25. E. Ferro, P. López, V. Brea, D. Cabello, Dynamic joint model of capacitive charge pumps and on-chip photovoltaic cells for CMOS micro-energy harvesting, Int. J. Circ. Theor. Appl. 44, 1874–1894 (2016) [Google Scholar]
  26. N. Ramli, T. Arslan, N. Haridas, W. Zhou, Design, simulation and analysis of a digital RF MEMS varactor using thick SU‑8 polymer, Microsyst Technol. 24, 473–482 (2018) [Google Scholar]
  27. H. Nieminen, V. Ermolov, K. Nybergh, S. Silanto, T. Ryhanen, Microelectromechanical capacitors for RF applications, J. Micromech. Microeng. 12, 177–186 (2002) [Google Scholar]
  28. M. Toki, Y. Tsuzuki, T. Mitsuoka, Measuring method of active impedance of crystal oscillator circuits, Electr. Commun. Jpn. (Part II: Electronics) 68, 68–76 (1985) [Google Scholar]
  29. B. Dong, Y. Ma, Z. Ren, C. Lee, Recent progress in nanoplasmonics based integrated optical micro/nano-systems, J. Phys. D 53, 213001 (2020) [Google Scholar]
  30. Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong, C. Lee, Leveraging of MEMS technologies for optical metamaterials applications, Adv. Opt. Mater. 8, 1900653 (2020) [Google Scholar]
  31. H. Prashad, Theoretical evaluation of impedance, capacitance and charge and accumulation on roller bearings operated under electrical fields, Wear 125, 223–239 (1988) [Google Scholar]
  32. E. Gallagher, W. Moussa, A study of the effect of the fringe fields on the electrostatic force in vertical comb drives, Sensors 14, 20149–20164 (2014) [Google Scholar]
  33. S. Banerjee, M. Levy, M. Davis, B. Wilkerson, Exact and approximate capacitance and force expressions for the electrostatic interaction between two equal-sized charged conducting spheres, IEEE Trans. Ind. Appl. 53, 2455–2460 (2017) [Google Scholar]
  34. C. Je, J. Jeon, S. Lee, W. Yang, MEMS capacitive microphone with dual-anchored membrane, Proceedings 1, 342 (2017) [Google Scholar]
  35. J. Dennis, A. Ahmed, M. Khir, A. Rabih, Modelling and simulation of the effect of air damping on the frequency and quality factor of a CMOS-MEMS resonator, Appl. Math. Inf. Sci. 9, 729–737 (2015) [Google Scholar]
  36. J. Zhu, X. Guo, R. Huang, Asymmetric disappearance and periodic asymmetric phenomena of rocking dynamics in micro dual-capacitive energy harvester. 2018 International Symposium on Aerospace, Automotive, Mechanical and Materials Engineering 1971, 040002 (2018) [Google Scholar]
  37. J. Lin, J. Zhu, Y. Chang, Z. Feng, M. Almasri, Surface micromachined MEMS capacitors with dual-cavity for energy harvesting, J. Microelectromech. Syst. 22, 1458–1469 (2013) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.