Open Access
Issue |
Mechanics & Industry
Volume 23, 2022
|
|
---|---|---|
Article Number | 2 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/meca/2021051 | |
Published online | 21 January 2022 |
- R.L. Bisplinghoff, H. Ashley, R.L. Halfman, Aeroelasticity, Courier Corporation (1996) [Google Scholar]
- C. Scruton, N. Lambourne, Similarity requirements for flutter model testing, in: E.C. Pike (Ed.), Manuel on Aeroelasticity, Vol. IV of AGARD, 1971, Chap. 6, pp. 1–26 [Google Scholar]
- M. French, An application of structural optimization in wind tunnel model design, in: 31st Structures, Structural Dynamics and Materials Conference, American Institute of Aeronautics and Astronautics, Long Beach, California (1990) [Google Scholar]
- M. French, F.E. Eastep, Aeroelastic model design using parameter identification, J. Aircraft 33, 198–202 (1996) [Google Scholar]
- P. Pereira, L. Almeida, A. Suleman, V. Bond, R. Canfield, M. Blair, Aeroelastic scaling and optimization of a joined-wing aircraft concept, in: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, Honolulu, Hawaii, 2007 [Google Scholar]
- V.L. Bond, R.A. Canfield, A. Suleman, M. Blair, Aeroelastic scaling of a joined wing for nonlinear geometric stiffness, AIAA J. 50, 513–522 (2012) [Google Scholar]
- J. Richards, A. Suleman, R. Canfield, M. Blair, Design of a scaled RPV for investigation of gust response of joined-wing sensorcraft, in: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, Palm Springs, California, 2009 [Google Scholar]
- A. Ricciardi, R. Canfield, M. Patil, N. Lindsley, Nonlinear aeroelastic scaling of a joined wing aircraft, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, in American Institute of Aeronautics and Astronautics, Honolulu, Hawaii, 2012 [Google Scholar]
- A.P. Ricciardi, C.A.G. Eger, R.A. Canfield, M.J. Patil, Nonlinear aeroelastic-scaled-model optimization using equivalent static loads. J. Aircraft 51, 1842–1851 (2014) [Google Scholar]
- A.P. Ricciardi, R.A. Canfield, M.J. Patil, N. Lindsley, Nonlinear aeroelastic. J. Aircraft 53, 20–32 (2016) [CrossRef] [Google Scholar]
- J. Mas Colomer, N. Bartoli, T. Lefebvre, et al. Similarity maximization of a scaled aeroelastic flight demonstrator via multidisciplinary optimization, in: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, Grapevine, Texas, 2017 [Google Scholar]
- C. Spada, F. Afonso, F. Lau, A. Suleman, Nonlinear aeroelastic scaling of high aspect-ratio wings. Aerospace Sci. Technol. 63, 363–371 (2017) [Google Scholar]
- T.R. Brooks, G.K.W. Kenway, J.R.R.A. Martins, Benchmark aerostructural models for the study of transonic aircraft wings. AIAA J. 56, 2840–2855 (2018) [CrossRef] [Google Scholar]
- M. Friswell, J.E. Mottershead, in: Finite element model updating in structural dynamics, Springer Science & Business Media (2013), Vol. 38 [Google Scholar]
- T. Marwala, Finite element model updating using computational intelligence techniques: applications to structural dynamics, Springer Science & Business Media (2010) [Google Scholar]
- J. Mas Colomer Aeroelastic similarity of a flight demonstrator via multidisciplinary optimization, Ph.D. thesis, Doctorat de l’Université de Toulouse délivré par: l’Institut Supérieur de l’Aéronautique et de l’Espace (ISAE), 2018 [Google Scholar]
- T. Pires, Linear Aeroelastic Scaling of a Joined Wing Aircraft, Instituto Superior Tecnico, TU Lisbon, 2014 [Google Scholar]
- B. Prananta, T. Kanakis, J. Vankan, R. van Houten, Model updating of finite element model using optimisation routine, Aircraft Eng. Aerospace Technol. 88, 665–675 (2016) [Google Scholar]
- A. Gupta, C.P. Moreno, H. Pfifer, B. Taylor, G.J. Balas, Updating a finite element based structural model of a small flexible aircraft, in: AIAA Modeling and Simulation Technologies Conference, 2015, p. 0903 [Google Scholar]
- R.J. Allemang, D.L. Brown, A correlation coefficient for modal vector analysis, in: Proceedings of the 1st international modal analysis conference, Vol. 1, SEM Orlando, 1982, pp. 110–116 [Google Scholar]
- D.F. Giraldo, A structural health monitoring framework for civil structures, Ph.D. thesis, Washington University, Saint Louis, Missouri, 2006 [Google Scholar]
- J. Morlier, A. Basile, A. Chiplunkar, M. Charlotte, An ego-like optimization framework for sensor placement optimization in modal analysis. Smart Mater. Struct. 27, 075004 (2018) [CrossRef] [Google Scholar]
- T.S. Kim, Y.Y. Kim, Mac-based mode-tracking in structural topology optimization. Comput. Struct. 74, 375–383 (2000) [CrossRef] [Google Scholar]
- T. Ting, T.L.C. Chen, W.J. Twomey, An automated mode tracking strategy (dynamic structural analysis of helicopterstructures), AIAA J. 33, 183–185 (1995) [CrossRef] [Google Scholar]
- J.C. Vassberg, M.A. DeHaan, S.M. Rivers, R.A. Wahls, Development of a common research model for applied CFD validationstudies, AIAA paper 6919, 2008 [Google Scholar]
- M.J. Powell, A direct search optimization method that models the objective and constraint functions by linear interpolation, in: Advances in optimization and numerical analysis, Springer, 1994, pp. 51–67 [CrossRef] [Google Scholar]
- J. Mas Colomer, N. Bartoli, T. Lefebvre, J.R. R.A. Martins, J. Morlier, An MDO-based methodology for static aeroelastic scaling of wings under non-similar flow, Struct. Multidiscipl. Optim. 63, 1045–1061 (2021) [CrossRef] [Google Scholar]
- C.W. MacCormick, The NASTRAN User’s Manual:(level 15), National Aeronautics and Space Administratio, 1972 [Google Scholar]
- J. Mas Colomer, N. Bartoli, T. Lefebvre, J.R. Martins, J. Morlier, Aeroelastic scaling of flying demonstrator: flutter matching, Mech. Ind. 22, 42 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
- A. Girard, N. Roy, in: Structural dynamics in industry, John Wiley & Sons, 2010, Vol. 7 [Google Scholar]
- T.C.S. Rendall, C.B. Allen, Unified fluid-structure interpolation and mesh motion using radial basis functions, Int. J. Numer. Methods Eng. 74, 1519–1559 (2008) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.