Open Access
Issue
Mechanics & Industry
Volume 23, 2022
Article Number 3
Number of page(s) 20
DOI https://doi.org/10.1051/meca/2022001
Published online 07 February 2022
  1. Dassault Systèmes. Abaqus Unified FEA. https://www.3ds.com/fr/produits-et-services/simulia/produits/abaqus/, 1978-present [Google Scholar]
  2. T. Daniel, F. Casenave, N. Akkari, D. Ryckelynck, Model order reduction assisted by deep neural networks (ROM-net), Adv. Model. Simul. Eng. Sci. 7, 1–27 (2020) [CrossRef] [Google Scholar]
  3. C. Bovet, A. Parret-Freaud, N. Spillane, P. Gosselet, Adaptive multipreconditioned FETI: scalability results and robustness assessment, Comput. Struct. 193, 1–20 (2017) [CrossRef] [Google Scholar]
  4. Mines ParisTech and ONERA the French aerospace lab. Z-set: nonlinear material & structure analysis suite. http://www.zset-software.com, 1981-present [Google Scholar]
  5. L. Cordier, M. Bergmann, Proper Orthogonal Decomposition: an overview, in Lecture series 2002-04, 2003-03 and 2008-01 on post-processing of experimental and numerical data, Von Karman Institute for Fluid Dynamics, 2008, page 46 pages. VKI (2008) [Google Scholar]
  6. C. Rowley, T. Colonius, R. Murray, Model reduction for compressible flow using POD and Galerkin projection, Physica D 189, 115–129 (2003) [Google Scholar]
  7. J.A. Hernandez, M.A. Caicedo, A. Ferrer, Dimensional hyper-reduction of nonlinear finite element models via empirical cubature, Comput. Methods Appl. Mech. Eng. 313, 687–722 (2017) [CrossRef] [Google Scholar]
  8. W. Keiper, A. Milde, S. Volkwein, Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing (Springer International Publishing, 2018) [CrossRef] [Google Scholar]
  9. A. Quarteroni, G. Rozza, Reduced Order Methods for Modeling and Computational Reduction (Springer Publishing Company, Incorporated, 2013) [Google Scholar]
  10. F. Chinesta, E. Cueto, PGD-Based Modeling of Materials, Structures and Processes (Springer, 2014) [CrossRef] [Google Scholar]
  11. F. Chinesta, P. Ladeveze, E. Cueto, A short review on model order reduction based on Proper Generalized Decomposition, Arch. Comput. Methods Eng. 18, 395–404 (2011) [CrossRef] [Google Scholar]
  12. C. Prud’homme, D. Rovas, K. Veroy, L. Machiels, Y. Maday, A. Patera, G. Turinici, Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods, J. Fluids Eng. 124, 70 (2002) [CrossRef] [Google Scholar]
  13. G. Rozza, D. Huynh, A. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Comput. Methods Eng. 15, 1–47 (2007) [CrossRef] [Google Scholar]
  14. D. Ryckelynck, A priori hyperreduction method: an adaptive approach, J. Comput. Phys. 202, 346–366 (2005) [CrossRef] [Google Scholar]
  15. M. Barrault, Y. Maday, N.C. Nguyen, A.T. Patera, An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Math. 339, 666–672 (2004) [Google Scholar]
  16. P. Astrid, S. Weiland, K. Willcox, T. Backx, Missing point estimation in models described by proper orthogonal decomposition, Proc. IEEE Conf. Decis. Control 53, 1767–1772 (2005) [Google Scholar]
  17. N.C. Nguyen, A.T. Patera, J. Peraire, A best points interpolation method for efficient approximation of parametrized functions, Int. J. Numer. Methods Eng. 73, 521–543 (2008) [CrossRef] [Google Scholar]
  18. S. Chaturantabut, D. Sorensen, Discrete empirical interpolation for nonlinear model reduction, in Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference, CDC/CCC 2009, 2010, pp. 4316–4321 [Google Scholar]
  19. K. Carlberg, C. Farhat, J. Cortial, D. Amsallem, The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows, J. Comput. Phys. 242, 623–647 (2013) [CrossRef] [MathSciNet] [Google Scholar]
  20. C. Farhat, P. Avery, T. Chapman, J. Cortial, Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency, Int. J. Numer. Methods Eng. 98, 625–662 (2014) [CrossRef] [Google Scholar]
  21. M. Yano, A.T. Patera, An LP empirical quadrature procedure for reduced basis treatment of parametrized nonlinear PDEs, Comput. Methods Appl. Mech. Eng. 344, 1104–1123 (2019) [CrossRef] [Google Scholar]
  22. F. Casenave, N. Akkari, F. Bordeu, C. Rey, D. Ryckelynck, A nonintrusive distributed reduced-order modeling framework for nonlinear structural mechanics – application to elastoviscoplastic computations, Int. J. Numer. Methods Eng. 121, 32–53 (2020) [CrossRef] [Google Scholar]
  23. N. Cagniart, Y. Maday, B. Stamm, Model order reduction for problems with large convection effects, in B. Chetvershkin, W. Fitzgibbon, Y. Kuznetsov, P. Neittaanmäki, J. Periaux, O. Pironneau (Eds.), Contributions to Partial Differential Equations and Applications. Computational Methods in Applied Sciences, 2019 [Google Scholar]
  24. A. Iollo, D. Lombardi, Advection modes by optimal mass transfer, Phys. Rev. E 89, 022923 (2014) [CrossRef] [PubMed] [Google Scholar]
  25. J. Reiss, P. Schulze, J. Sesterhenn, V. Mehrmann, The shifted proper orthogonal decomposition: a mode decomposition for multiple transport phenomena, SIAM J. Sci.Comput. 40, A1322–A1344 (2018) [CrossRef] [Google Scholar]
  26. R. Zimmermann, B. Peherstorfer, K. Willcox, Geometric subspace updates with applications to online adaptive nonlinear model reduction, SIAM J. Matrix Anal. Appl. 39, 234–261 (2018) [CrossRef] [MathSciNet] [Google Scholar]
  27. F. Casenave, N. Akkari, An error indicator-based adaptive reduced order model for nonlinear structural mechanics - application to high-pressure turbine blades, Math. Comput. Appl. 24, 41 (2019) [Google Scholar]
  28. W. He, P. Avery, C. Farhat, In-situ adaptive reduction of nonlinear multiscale structural dynamics models 121, 4971–4988 (2020) [Google Scholar]
  29. T. Kim, D.L. James, Skipping steps in deformable simulation with online model reduction, ACM Trans. Graph. 28, 1–9 (2009) [Google Scholar]
  30. M. Ohlberger, F. Schindler, Error control for the localized reduced basis multiscale method with adaptive on-line enrichment, SIAM J. Sci. Comput. 37, A2865–A2895 (2015) [CrossRef] [Google Scholar]
  31. D. Amsallem, J. Cortial, C. Farhat, Towards real-time computational-fluid-dynamics-based aeroelastic computations using a database of reduced-order information, AIAA J. 48, 2029–2037 (2010) [CrossRef] [Google Scholar]
  32. D. Amsallem, C. Farhat, Interpolation method for adapting reduced-order models and application to aeroelasticity, AIAA J. 46, 1803–1813 (2008) [CrossRef] [Google Scholar]
  33. D. Amsallem, C. Farhat, An online method for interpolating linear parametric reduced-order models, SIAM J. Sci. Comput. 33, 2169–2198 (2011) [CrossRef] [MathSciNet] [Google Scholar]
  34. Y. Choi, G. Boncoraglio, S. Anderson, D. Amsallem, C. Farhat, Gradient-based constrained optimization using a database of linear reduced-order models, J. Comput. Phys. 423, 109787 (2020) [CrossRef] [MathSciNet] [Google Scholar]
  35. T. Lieu, C. Farhat, Adaptation of POD-based aeroelastic ROMs for varying Mach number and angle of attack: Application to a complete F-16 configuration, AIAA Paper 2005-7666 (2005) [Google Scholar]
  36. T. Lieu, C. Farhat, Adaptation of aeroelastic reduced-order models and application to an F-16 configuration, AIAA J. 45, 1244–1257 (2007) [CrossRef] [Google Scholar]
  37. T. Lieu, C. Farhat, M. Lesoinne, POD-based aeroelastic analysis of a complete F-16 configuration: ROM adaptation and demonstration, AIAA Paper 2005-2295 (2005) [Google Scholar]
  38. T. Lieu, C. Farhat, M. Lesoinne, Reduced-order fluid/structure modeling of a complete aircraft configuration, Comput. Methods Appl. Mech. Eng. 195, 5730–5742 (2006) [CrossRef] [Google Scholar]
  39. T. Lieu, M. Lesoinne, Parameter adaptation of reduced order models for three-dimensional flutter analysis, AIAA Paper 2004-0888 (2004) [Google Scholar]
  40. R. Mosquera, A. El Hamidi, A. Hamdouni, A. Falaize, Generalization of the Neville-Aitken Interpolation Algorithm on Grassmann Manifolds : Applications to Reduced Order Model, Int. J. Nume. Methods Fluids 93, 2421–2442 (2021) [CrossRef] [Google Scholar]
  41. R. Mosquera, A. Hamdouni, A. El Hamidi, C. Allery, POD basis interpolation via Inverse Distance Weighting on Grassmann manifolds, Discr.Continu. Dyn. Syst. Ser. S 12, 1743–1759 (2018) [Google Scholar]
  42. D. Amsallem, R. Tezaur, C. Farhat, Real-time solution of linear computational problems using databases of parametric reduced-order models with arbitrary underlying meshes, J. Comput. Phys. 326, 373–397 (2016) [CrossRef] [MathSciNet] [Google Scholar]
  43. S. Kaulmann, B. Haasdonk, Online greedy reduced basis construction using dictionaries. VI International Conference on Adaptive Modeling and Simulation (ADMOS 2013), 2013, pp. 365–376 [Google Scholar]
  44. Y. Maday, B. Stamm, Locally adaptive greedy approximations for anisotropic parameter reduced basis spaces, SIAM J. Sci. Comput. 35, A2417–A2441 (2013) [CrossRef] [Google Scholar]
  45. M. Dihlmann, M. Drohmann, B. Haasdonk, Model reduction of parametrized evolution problems using the reduced basis method with adaptive time partitioning, Proc. of ADMOS 2011, 64 (2011) [Google Scholar]
  46. M. Drohmann, B. Haasdonk, M. Ohlberger, Adaptive reduced basis methods for nonlinear convection-diffusion equations, Finite Volumes for Complex Applications VI Problems & Perspectives, Springer, 2011, pp. 369–377 [CrossRef] [Google Scholar]
  47. J. Eftang, A. Patera, E. Ronquist, An “hp” certified reduced basis method for parametrized elliptic partial differential equations, SIAM J. Sci. Comput. 32, 3170–3200 (2010) [CrossRef] [MathSciNet] [Google Scholar]
  48. B. Haasdonk, M. Dihlmann, M. Ohlberger, A training set and multiple bases generation approach for parametrized model reduction based on adaptive grids in parameter space, Math. Comput. Model. Dyn. Syst. 17, 423–442 (2011) [CrossRef] [MathSciNet] [Google Scholar]
  49. M.G. Kapteyn, D.J. Knezevic, K.E. Willcox, Toward predictive digital twins via component-based reduced-order models and interpretable machine learning. AIAA Scitech 2020 Forum, 2020, 0418 [Google Scholar]
  50. M.G. Kapteyn, K.E. Willcox, From physics-based models to predictive digital twins via interpretable machine learning. arXiv preprint, arXiv:2004.11356 (2020) [Google Scholar]
  51. B. Peherstorfer, D. Butnaru, K. Willcox, H.J. Bungartz, Localized discrete empirical interpolation method, SIAM J. Sci. Comput. 36, A168–A192 (2014) [CrossRef] [Google Scholar]
  52. D. Amsallem, M. Zahr, C. Farhat, Nonlinear model order reduction based on local reduced-order bases, Int. J. Numer. Methods Eng. 92, 891–916 (2012) [CrossRef] [Google Scholar]
  53. D. Amsallem, M. Zahr, K. Washabaugh, Fast local reduced basis updates for the efficient reduction of nonlinear systems with hyper-reduction, Adv. Comput. Math. 41, 1187–1230 (2015) [CrossRef] [MathSciNet] [Google Scholar]
  54. S. Grimberg, C. Farhat, R. Tezaur, C. Bou-Mosleh, Mesh sampling and weighting for the hyperreduction of nonlinear Petrov-Galerkin reduced-order models with local reduced-order bases, Int. J. Numer. Methods Eng. 122, 1846–1874 (2021) [CrossRef] [Google Scholar]
  55. F. Nguyen, S.M. Barhli, D.P. Muñoz, D. Ryckelynck, Computer vision with error estimation for reduced order modeling of macroscopic mechanical tests, Complexity 2018, 3791543 (2018) [Google Scholar]
  56. D. Ryckelynck, T. Goessel, F. Nguyen, Mechanical dissimilarity of defects in welded joints via Grassmann manifold and machine learning, Compt. Rend. Mécaniq. 348, 911–935 (2020) [Google Scholar]
  57. K. Washabaugh, D. Amsallem, M. Zahr, C. Farhat, Nonlinear model reduction for CFD problems using local reduced order bases, 42nd AIAA Fluid Dynamics Conference International Journal for Numerical Methods in Fluids, 2012, 2686 [Google Scholar]
  58. Y. Kim, Y. Choi, D. Widemann, T. Zohdi, A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder, Elsevier, 2021, u7 110841 [Google Scholar]
  59. K. Lee, K. Carlberg, Deep conservation: a latent-dynamics model for exact satisfaction of physical conservation laws, arXiv preprint, arXiv:1909.09754 (2019) [CrossRef] [Google Scholar]
  60. K. Lee, K.T. Carlberg, Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders, J. Comput. Phys. 404, 108973 (2020) [CrossRef] [MathSciNet] [Google Scholar]
  61. T. Daniel, F. Casenave, N. Akkari, A. Ketata, D. Ryckelynck, Physics-informed cluster analysis and a priori efficiency criterion for the construction of local reduced-order bases, 2021, https://arxiv.org/pdf/2103.13683.pdf [Google Scholar]
  62. T. Daniel, F. Casenave, N. Akkari, D. Ryckelynck, Data augmentation and feature selection for automatic model recommendation in computational physics, Math. Comput. Appl. 26, 17 (2021) [Google Scholar]
  63. H. Peng, F. Long, C. Ding, Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy, IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226–1238 (2005) [CrossRef] [PubMed] [Google Scholar]
  64. B.N. Khoromskij, A. Litvinenko, H.G. Matthies, Application of hierarchical matrices for computing the Karhunen-Loève expansion, Computing 84, 49–67 (2009) [CrossRef] [MathSciNet] [Google Scholar]
  65. C. Scarth et al., Random field simulation over curved surfaces: applications to computational structural mechanics, Comput. Methods Appl. Mech. Eng. 345, 283–301 (2019) [CrossRef] [Google Scholar]
  66. V. Surazhsky, T. Surazhsky, D. Kirsanov, S.J. Gortler, H. Hoppe, Fast exact and approximate geodesics on meshes, ACM Trans. Graph. 24, 553–560 (2005) [CrossRef] [Google Scholar]
  67. J.S.B. Mitchell, D.M. Mount, C.H. Papadimitriou, The discrete geodesic problem, SIAM J, Comput. 16, 647–668 (1987) [CrossRef] [MathSciNet] [Google Scholar]
  68. V.R. Joseph, E. Gul, S. Ba, Maximum projection designs for computer experiments, Biometrika 102, 371–380 (2015) [CrossRef] [MathSciNet] [Google Scholar]
  69. R. Everson, L. Sirovich, Karhunen–Loève procedure for gappy data, J. Opt. Soc. Am. A 12, 1657–1664 (1995) [CrossRef] [Google Scholar]
  70. L. Kaufman, P.J.R. Leonard Kaufman, P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, Wiley, 1990 [Google Scholar]
  71. L. Kaufmann, P. Rousseeuw, Clustering by means of medoids, Data Analysis based on the L1-Norm and Related Methods, 1987, pp. 405–416 [Google Scholar]
  72. I. Borg, P. Groenen, Modern Multidimensional Scaling: Theory and Applications, 2nd edn. Springer Science & Business Media, 2005 [Google Scholar]
  73. J. de Leeuw Applications of convex analysis to multidimensional scaling, in J.R. Barra, F. Brodeau, G. Romier, B. van Cutsem (Eds.), Recent Developments in Statistics, 1977, pp. 133–145 [Google Scholar]
  74. F. Pedregosa, G. Varoquaux, A. Gramfort, et al. Scikit-learn: machine learning in Python, J. Mach. Learn. Res. 12, 2825–2830 (2011) [MathSciNet] [Google Scholar]
  75. J. Berkson, Application of the logistic function to bio-assay, J. Am. Stat. Assoc. 39, 357–365 (1944) [Google Scholar]
  76. D.R. Cox, The regression analysis of binary sequences, J. Royal Stat. Soc. Ser. B 20, 215–242 (1958) [Google Scholar]
  77. D.R. Cox, Some procedures connected with the logistic qualitative response curve, Research papers in probability and statistics, 1996, pp. 55–71 [Google Scholar]
  78. H. Zou, T. Hastie, Regularization and variable selection via the elastic net, J. Royal Stat. Soc. Ser B 67, 301–320 (2005) [CrossRef] [MathSciNet] [Google Scholar]
  79. T. Hastie, R. Tibshirani, J.H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer series in statistics 2nd edn, Springer, 2009 [Google Scholar]
  80. D. Ryckelynck, D.M. Benziane, A. Musienko, G. Cailletaud, Toward “green” mechanical simulations in materials science, Eur. J. Comput. Mech. 19, 365–388 (2010) [CrossRef] [Google Scholar]
  81. R. J. Asaro, Crystal plasticity, J. Appl. Mech. 50, 921–934 (1983) [CrossRef] [Google Scholar]
  82. L. Meric, P. Poubanne, G. Cailletaud, Single crystal modeling for structural calculations: Part 1 - model presentation, J. Eng. Mater. Technol. 113, 162–170 (1991) [CrossRef] [Google Scholar]
  83. F. Gallerneau, Etude et modelisation de l’endommagement d’un superalliage monocristallin revetu pour aube de turbine, PhD thesis - Mines ParisTech, 1995 [Google Scholar]
  84. F. Gallerneau, D. Nouailhas, J.L. Chaboche, A fatigue damage model including interaction effects with oxidation and creep damages, in Fatigue’ 96: Proceedings of the Sixth International Fatigue Congress, 1996, pp. 861–866 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.