Open Access
Issue
Mechanics & Industry
Volume 23, 2022
Article Number 12
Number of page(s) 11
DOI https://doi.org/10.1051/meca/2022010
Published online 28 June 2022
  1. V.K. Meena, P. Kumar, P. Kalra, R.K. Sinha, Additive manufacturing for metallic spinal implants: a systematic review, Ann. 3D Printed Med. 3, 100021 (2021) [CrossRef] [Google Scholar]
  2. P. Moghimian, T. Poirié, M. Habibnejad-Korayem, et al., Metal powders in additive manufacturing: a review on reusability and recyclability of common titanium, nickel and aluminum alloys, Addit. Manufactur. 43, 102017 (2021) [CrossRef] [Google Scholar]
  3. A. Nouri, A. Rohani Shirvan, Y. Li, C. Wen, Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion: a review, J. Mater. Sci. Technol. 94, 196–215 (2021) [CrossRef] [Google Scholar]
  4. A. Ostovari Moghaddam, N.A. Shaburova, M.N. Samodurova, A. Abdollahzadeh, E.A. Trofimov, Additive manufacturing of high entropy alloys: A practical review, J. Mater. Sci. Technol. 77, 131–162 (2021) [CrossRef] [Google Scholar]
  5. M. Ansari, E. Jabari, E. Toyserkani, Opportunities and challenges in additive manufacturing of functionally graded metallic materials via powder-fed laser directed energy deposition: a review, J. Mater. Process. Technol. 294, 117117 (2021) [CrossRef] [Google Scholar]
  6. G. Gong, J. Ye, Y. Chi, et al., Research status of laser additive manufacturing for metal: a review, J. Mater. Res. Technol. 15, 855–884 (2021) [CrossRef] [Google Scholar]
  7. K. Ishfaq, M. Abdullah, M.A. Mahmood, A state-of-the-art direct metal laser sintering of Ti6Al4V and AlSi10Mg alloys: surface roughness, tensile strength, fatigue strength and microstructure, Optics Laser Technol. 143, 107366 (2021) [CrossRef] [Google Scholar]
  8. A.K. Singla, M. Banerjee, A. Sharma, et al., Selective laser melting of Ti6Al4V alloy: process parameters, defects and post-treatments, J. Manufactur. Process. 64, 161–187 (2021) [CrossRef] [Google Scholar]
  9. J.A. Tamayo, M. Riascos, C.A. Vargas, L.M. Baena, Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry, Heliyon 7, e06892 (2021) [CrossRef] [PubMed] [Google Scholar]
  10. H.S. Park, M.J. Ansari, Estimation of residual stress and deformation in selective laser melting of Ti6Al4V alloy, Proc. CIRP 93, 44–49 (2020) [CrossRef] [Google Scholar]
  11. T. Rautio, A. Hamada, J. Mäkikangas, M. Jaskari, A. Järvenpää, Laser welding of selective laser melted Ti6Al4V: Microstructure and mechanical properties, Mater. Today: Proc. 28, 907–911 (2020) [CrossRef] [Google Scholar]
  12. I.T. 150, Surgical implants. Partial and complete hip prostheses. Part 2: Articulating surfaces made of metals, ceramics and plastics. 2011 pp. 12P.;A14 [Google Scholar]
  13. B.S. Institution, Non-active surgical implants – joint replacement implants – specific requirements for knee-joint replacement implants (ISO 21536), 2009 [Google Scholar]
  14. L. Baotai Group Co., I.o.N.M.T.a. Economics, Titanium and titanium alloy processing materials for surgical implants. General Administration of Quality Supervision Inspection and Quarantine of the People’s Republic of China, National standardization and Administration Committee of China (2017), pp. 20 [Google Scholar]
  15. T.M.D.Q.S.a.I. Center, C.S.F.a.D.A.M.D.T.E. Center, Passive surgical implants - General requirements (State Food and Drug Administration, 2016), pp. 1–16 [Google Scholar]
  16. A.D. Baghi, S. Nafisi, R. Hashemi, H. Ebendorff-Heidepriem, R. Ghomashchi, Effective post processing of SLM fabricated Ti-6Al-4 V alloy: machining vs thermal treatment, J. Manufactur. Process. 68, 1031–1046 (2021) [CrossRef] [Google Scholar]
  17. S.H. Riza, Comprehensive Materials Processing (Elsevier, 2014) [Google Scholar]
  18. Y. Eyzat, M. Chemkhi, Q. Portella, J. Gardan, J. Remond, D. Retraint, Characterization and mechanical properties of As-Built SLM Ti-6Al-4V subjected to surface mechanical post-treatment, Proc. CIRP 81, 1225–1229 (2019) [CrossRef] [Google Scholar]
  19. P.R. da Costa, M. Sardinha, L. Reis, M. Freitas, M. Fonte, Ultrasonic fatigue testing in as-built and polished Ti6Al4V alloy manufactured by SLM, Forces Mech. 4, 100024 (2021) [CrossRef] [Google Scholar]
  20. M.A. Obeidi, E. McCarthy, B. O’Connell, I.U. Ahad, D. Brabazon, Laser polishing of additive manufactured 316L stainless steel synthesized by selective laser melting, Materials (2019) [Google Scholar]
  21. M.A. Obeidi, A. Mussatto, M.N. Dogu, et al., Laser surface polishing of Ti-6Al-4V parts manufactured by laser powder bed fusion, Surf. Coat. Technol. 434, 128179 (2022) [CrossRef] [Google Scholar]
  22. A. Balyakin, E. Zhuchenko, E. Nosova, Study of heat treatment impact on the surface defects appearance on samples obtained by selective laser melting of Ti-6Al-4V during chemical polishing, Mater. Today: Proc. 19 (2019) [Google Scholar]
  23. C. Zhao, N. Qu, X. Tang, Electrochemical mechanical polishing of internal holes created by selective laser melting, J. Manufactur. Process. 64, 1544–1562 (2021) [CrossRef] [Google Scholar]
  24. A.K. Bastola, M. Hossain, The shape – morphing performance of magnetoactive soft materials, Mater. Des. 211, 110172 (2021) [CrossRef] [Google Scholar]
  25. S. Kumar, R. Sehgal, M.F. Wani, M.D. Sharma, Stabilization and tribological properties of magnetorheological (MR) fluids: a review, J. Magn. Magn. Mater. 538, 168295 (2021) [CrossRef] [Google Scholar]
  26. Z. Xia, F. Fang, E. Ahearne, M. Tao, Advances in polishing of optical freeform surfaces: a review, J. Mater. Process. Technol. 286, 116828 (2020) [CrossRef] [Google Scholar]
  27. M.N. Aruna, M.R. Rahman, S. Joladarashi, H. Kumar, P. Devadas Bhat, Influence of different fumed silica as thixotropic additive on carbonyl particles magnetorheological fluids for sedimentation effects, J. Magn. Magn. Mater. 529, 167910 (2021) [CrossRef] [Google Scholar]
  28. B. Gopinath, G.K. Sathishkumar, P. Karthik, et al., A systematic study of the impact of additives on structural and mechanical properties of magnetorheological fluids, Mater. Today: Proc. 37, 1721–1728 (2021) [CrossRef] [Google Scholar]
  29. Q. Luo, Y. Wang, H. Liu, J. Wang, Y. Gan, T. Li, Static response analysis of shallow spherical shell under local support of magnetorheological fluid (MRF), Thin-Walled Struct. 169, 108470 (2021) [CrossRef] [Google Scholar]
  30. G. Wang, J. Geng, X. Qi, et al., Rheological performances and enhanced sedimentation stability of mesoporous Fe3O4 nanospheres in magnetorheological fluid, J. Mol. Liquids 336, 116389 (2021) [CrossRef] [Google Scholar]
  31. T. Xuan, J. Li, B. Li, W. Fan, Effects of the non-uniform magnetic field on the shear stress and the microstructure of magnetorheological fluid, J. Magn. Magn. Mater. 535, 168066 (2021) [CrossRef] [Google Scholar]
  32. C. Bingsan, Z. Cheng, B. Zhongyu, L. Chunyu, H. Dicheng, Enhancement effect of nonferromagnetic particles on the viscosity of magnetorheological fluid under a dynamic magnetic field, Funct. Mater. Lett. 14, 6 (2021) [Google Scholar]
  33. Z. Xie, N. Shen, W. Zhu, W. Tian, L. Hao, Theoretical and experimental investigation on the influences of misalignment on the lubrication performances and lubrication regimes transition of water lubricated bearing, Mech. Syst. Signal Proces. 149, 107211 (2021) [CrossRef] [Google Scholar]
  34. Z. Xie, W. Zhu, Theoretical and experimental exploration on the micro asperity contact load ratios and lubrication regimes transition for water-lubricated stern tube bearing, Tribol. Int. 164, 107105 (2021) [CrossRef] [Google Scholar]
  35. G. Wang, W. Wang, Y. Zhang, et al., Study on micro-plastic behavior and tribological characteristics of granular materials in friction process, Ind. Lubric. Tribol. 73, 1098–1104 (2021) [CrossRef] [Google Scholar]
  36. Q. Zhang, B. Wu, R. Song, H. Song, J. Zhang, X. Hu, Preparation, characterization and tribological properties of polyalphaolefin with magnetic reduced graphene oxide/Fe3O4 , Tribol. Int. 141, 105952 (2020) [CrossRef] [Google Scholar]
  37. H. Kansal, A.K. Singh, V. Grover, Magnetorheological nano-finishing of diamagnetic material using permanent magnets tool, Precis. Eng. 51, 30–39 (2018) [CrossRef] [Google Scholar]
  38. S.K. Paswan, A.K. Singh, Investigation of optimized parameters for magnetorheological finishing the internal surface of the cast-iron cylindrical molds, Arab. J. Sci. Eng. 46, 2147–2164 (2021) [CrossRef] [Google Scholar]
  39. A. Farshid, B. Hassan, Y. Pouria, Effect of abrasive particle morphology along with other influencing parameters in magnetic abrasive finishing process, Mech. Ind. 22, 15 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  40. G. Parameswari, V.K. Jain, J. Ramkumar, L. Nagdeve, Experimental investigations into nanofinishing of Ti6Al4V flat disc using magnetorheological finishing process, Int. J. Adv. Manufactur. Technol. 100, 1055–1065 (2019) [CrossRef] [Google Scholar]
  41. A. Barman, M. Das, Toolpath generation and finishing of bio-titanium alloy using novel polishing tool in MFAF process, Int. J. Adv. Manufactur. Technol. 100, 1123–1135 (2019) [CrossRef] [Google Scholar]
  42. W. Kordonski, S. Gorodkin, The behavior of a magnetorheological (MR) fluid under compressive deformation, J. Rheol. 60 (2016) [Google Scholar]
  43. Z. Xie, W. Zhu, An investigation on the lubrication characteristics of floating ring bearing with consideration of multi-coupling factors, Mech. Syst. Signal Process. 162, 108086 (2022) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.