Open Access
Mechanics & Industry
Volume 23, 2022
Article Number 15
Number of page(s) 10
Published online 20 July 2022
  1. E. Golonka, M. Pająk, D. Kolar, Selected diagnostic methods used in hydroelectric power plants, MATEC Web Conf., 2021 [Google Scholar]
  2. P. Breeze, Power Generation Technologies, Newnes, Oxford, 2005 [Google Scholar]
  3. E. Georgievskaia, Limitations of Modern Diagnostic and Prognostic Systems for a Hydraulic Unit’s, Health. Eng. 2, 27–42 (2021) [Google Scholar]
  4. T. Duratorre, G.M. Bombelli, G. Menduni, D. Bocchiola, Hydropower potential in the alps under climate change scenarios. The Chavonne Plant, Val D’Aosta, Water 12, 2011 (2020) [CrossRef] [Google Scholar]
  5. E. Quaranta et al., Hydropower case study collection: innovative low head and ecologically improved turbines, hydropower in existing infrastructures, hydropeaking reduction, digitalization and governing systems, Sustainability 12, 8873 (2020) [CrossRef] [Google Scholar]
  6. ISO 2081 6-1:2016 Mechanical Vibration − Measurement and evaluation of machine vibration part 1: General guidelines [Google Scholar]
  7. ISO 2081 6-5:2018 Mechanical Vibration − Measurement and evaluation of machine vibration part 5: Machine sets in hydraulic power generating and pump-storage plants [Google Scholar]
  8. B.J. Hamrock, S.R. Schmid, B.O. Jacobson, Fundamentals of fluid film lubrication (CRC Press, 2004) [CrossRef] [Google Scholar]
  9. D. Dowson, T.L. Whomes, Paper 8: side-leakage factors for a rigid cylinder lubricated by an isoviscous fluid, Proc. Inst. Mech. Eng. Conf. Proc. 181, 165–176 (1966) [Google Scholar]
  10. F. Concli, Equilibrium of a journal bearing: a simplified CFD-analytical coupled approach, WIT Trans. Eng. Sci. 128, 13–25 (2020) [CrossRef] [Google Scholar]
  11. A.P. Daga, A. Fasana, L. Garibaldi, S. Marchesiello, Big data management: a vibration monitoring point of view, in 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, Roma, Italy, 3–5 June 2020 (2020) [Google Scholar]
  12. A.P. Daga, L. Garibaldi, Machine vibration monitoring for diagnostics through hypothesis testing, Information (2019) doi:10.3390/info10060204 [Google Scholar]
  13. F. Castellani, L. Garibaldi, A.P. Daga, D. Astolfi, F. Natili, Diagnosis of faulty wind turbine bearings using tower vibration measurements, Energies (2020) [Google Scholar]
  14. D. Astolfi, A.P. Daga, F. Natili, F. Castellani, L. Garibaldi, Wind turbine drive-train condition monitoring through tower vibrations measurement and processing, in Proceedings of the ISMA 2020—International Conference on Noise and Vibration Engineering, Virtual Conference, 2020 [Google Scholar]
  15. A.P. Daga, A. Fasana, S. Marchesiello, L. Garibaldi, The Politecnico di Torino rolling bearing test rig: Description and analysis of open access data, Mech. Syst. Signal Process (2019) [Google Scholar]
  16. F. Natili, A.P. Daga, F. Castellani, L. Garibaldi, Multi-scale wind turbine bearings supervision techniques using industrial SCADA and vibration data, Appl. Sci. (2021) doi:10.3390/app11156785 [Google Scholar]
  17. A.P. Daga, L. Garibaldi, L. Bonmassar, Turbomolecular high-vacuum pump bearings diagnostics using temperature and vibration measurements, in 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT, Italy, 7–9 June 2021, 2021 [Google Scholar]
  18. A. Muszynska, Vibrational diagnostics of rotating machinery malfunctions, Int. J. Rotat. Mach. (1995) doi:10.1155/S1023621×95000108 [Google Scholar]
  19. C. Lee et al., Use of Directional Spectra of Vibration Signals for Diagnosis of Misalignment in Rotating Machinery (1997) [Google Scholar]
  20. C. Lee, Y. Han, Use of Directional Wigner Distribution for Identification of the Instantaneous Whirling Orbit in Rotating Machinery (1998) [Google Scholar]
  21. C. Lee, Y. Han, J. Park, Use of directional spectra for detection of engine cylinder power fault, Shock Vibr. (1997) doi:10.3233/SAV-1997-45-609 [Google Scholar]
  22. N. Bachschmid, P. Pennacchi, A. Vania, Diagnostic significance of orbit shape analysis and its application to improve machine fault detection, J. Braz. Soc. Mech. Sci. Eng. XXVI (2004) doi:10.1590/S1678-58782004000200012 [Google Scholar]
  23. A. Vania, P. Pennacchi, S. Chatterton, F. Cangioli, Special signal processing tools for the experimental data of spiral vibrations, in Proceedings of the 10th International Conference on Rotor Dynamics − IFToMM, 2019. doi:10.1007/978-3-319-99268-6_22 [Google Scholar]
  24. G. Pino, J.P. Ribas, L.F. Guimarães, Bearing diagnostics of hydro power plants using wavelet packet transform and a hidden Markov model with orbit curves, Shock Vibr. (2018). doi:10.1155/2018/5981089 [Google Scholar]
  25. I.T. Jolliffe, Principal Component Analysis, Springer, 2002 doi: 10.2307/1270093 [Google Scholar]
  26. H. André et al., Using a smartphone camera to analyse rotating and vibrating systems: Feedback on the SURVISHNO 2019 contest, Mech. Syst. Signal Process. (2021). DOI:10.1016/j.ymssp.2020.107553 [Google Scholar]
  27. A.P. Daga, L. Garibaldi, GA-adaptive template matching for offline shape motion tracking based on edge detection: IAS estimation from the SURVISHNO 2019 challenge video for machine diagnostics purposes, Algorithms (2020) doi:10.3390/a13020033 [PubMed] [Google Scholar]
  28. L. Viale, A.P. Daga, A. Fasana, L. Garibaldi, From novelty detection to a genetic algorithm optimized classification for the diagnosis of a SCADA-equipped complex machine, Machines 10, 270 (2022) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.