Open Access
Mechanics & Industry
Volume 23, 2022
Article Number 16
Number of page(s) 8
Published online 20 July 2022
  1. S. Du, L. Xi, J. Ni, P. Ershun, C.R. Liu, Product lifecycle-oriented quality and productivity improvement based on stream of variation methodology, Comput. Ind. 59, 180–192 (2008) [CrossRef] [Google Scholar]
  2. Y.S. Hong, T.C. Chang, A comprehensive review of tolerancing research, Int. J. Prod. Res. 40, 2425–2459 (2002) [CrossRef] [Google Scholar]
  3. O.W. Salomons, F.J. Haalboom, H. Poerink, F. VanSlooten, F. VanHouten, H. Kals, A computer aided tolerancing tool II: tolerance analysis, Comput. Ind. 31, 175–186 (1996) [CrossRef] [Google Scholar]
  4. H. Chen, S. Jin, Z. Li, X. Lai, A solution of partial parallel connections for the unified Jacobian-Torsor model, Mech. Mach. Theory 91, 39–49 (2015) [CrossRef] [Google Scholar]
  5. Z. Shen, G. Ameta, J.J. Shah, J.K. Davidson, A comparative study of tolerance analysis methods, J. Comput. Inf. Sci. Eng. 5, 247–256 (2005) [CrossRef] [Google Scholar]
  6. G. Ameta, S. Serge, M. Giordano, Comparison of spatial math models for tolerance analysis: tolerance-maps, deviation domain, and TTRS, J. Comput. Inf. Sci. Eng. 11, 0210042 (2011) [Google Scholar]
  7. C. Bo, Z. Yang, L. Wang, H. Chen, A comparison of tolerance analysis models for assembly, Int. J. Adv. Manuf. Tech. 68, 739–754 (2013) [CrossRef] [Google Scholar]
  8. A. Requicha, Toward a theory of geometric tolerancing (MIT Press, Cambridge, MA, 1983), pp. 45–60 [Google Scholar]
  9. L. Rivest, C. Fortin, C. Morel, Tolerancing a solid model with a kinematic formulation, Comput. Aided Des. 26, 465–476 (1994) [CrossRef] [Google Scholar]
  10. K.W. Chase, J. Gao, S.P. Magleby, General 2-D tolerance analysis of mechanical assemblies with small kinematic adjustments, J. Des. Manuf. 5, 263–274 (1995) [CrossRef] [Google Scholar]
  11. H. Chen, S. Jin, Z. Li, X. Lai, A comprehensive study of three dimensional tolerance analysis methods, Comput. Aided Des. 53, 1–13 (2014) [CrossRef] [Google Scholar]
  12. S. Du, X. Yao, D. Huang, M. Wang, Three-dimensional variation propagation modeling for multistage turning process of rotary workpieces, Comput. Ind. Eng. 82, 41–53 (2015) [CrossRef] [Google Scholar]
  13. P. Bourdet, L. Mathieu, C. Lartigue, A. Ballu, The concept of the small displacements torsor in metrology, in International Euroconference, Advanced Mathematical Tools in Metrology, 1996 [Google Scholar]
  14. A. Desrochers, A. Riviere, A matrix approach to the representation of tolerance zones and clearances, Int. J. Adv. Manuf. Tech. 13, 630–636 (1997) [CrossRef] [Google Scholar]
  15. J.S. Gao, K.W. Chase, S.P. Magleby, Generalized 3-D tolerance analysis of mechanical assemblies with small kinematic adjustments, IIE Trans. 30, 367–377 (1998) [Google Scholar]
  16. J.K. Davidson, A. Mujezinovic, J.J. Shah, A new mathematical model for geometric tolerances as applied to round faces, J. Mech. Des. 124, 609–622 (2002) [CrossRef] [Google Scholar]
  17. B. Schleich, N. Anwer, L. Mathieu, S. Wartzack, Skin model shapes: a new paradigm shift for geometric variations modelling in mechanical engineering, Comput. Aided Des. 50, 1–15 (2014) [CrossRef] [Google Scholar]
  18. M. Kyung, E. Sacks, Nonlinear kinematic tolerance analysis of planar mechanical systems, Comput. Aided Des. 35, 901–911 (2003) [CrossRef] [Google Scholar]
  19. E. Sacks, L. Joskowicz, Parametric kinematic tolerance analysis of general planar systems, Comput. Aided Des. 30, 707–714 (1998) [CrossRef] [Google Scholar]
  20. J. Brauer, Transmission error in anti-backlash conical involute gear transmissions: a global-local FE approach, Finite Elem. Anal. Des. 41, 431–457 (2005) [CrossRef] [Google Scholar]
  21. K. Lin, K. Chan, J. Lee, Kinematic error analysis and tolerance allocation of cycloidal gear reducers, Mech. Mach. Theory 124, 73–91 (2018) [CrossRef] [Google Scholar]
  22. J. Bruyère, J. Dantan, R. Bigot, P. Martin, Statistical tolerance analysis of bevel gear by tooth contact analysis and Monte Carlo simulation, Mech. Mach. Theory 42, 1326–1351 (2007) [CrossRef] [Google Scholar]
  23. A. Armillotta, Tolerance analysis of gear trains by static analogy, Mech. Mach. Theory 135, 65–80 (2019) [CrossRef] [Google Scholar]
  24. M. Zhang, Z. Zhang, L. Shi, P. Gao, J. Zhang, W. Zhang, A new assembly error modeling and calculating method of complex multi-stage gear transmission system for a large space manipulator, Mech. Mach. Theory 153, 1–23 (2020) [Google Scholar]
  25. ISO 1328-2. Cylindrical gears-ISO system of flank tolerance classification-Part 2: Definitions and allowable values of double flank radial composite deviations (2020) [Google Scholar]
  26. ANSI/AGMA 1-A01. Accuracy classification system-tangential measurements for cylindrical gears (2015) [Google Scholar]
  27. C.G. Glancy, K.W. Chase, A second order method for assembly tolerance analysis, in Proceedings of 1999 ASME Design Engineering Technical Conferences, Las Vegas, Nevada, USA, 1999 [Google Scholar]
  28. H. Chen, X. Li, S. Jin, A statistical method of distinguishing and quantifying tolerances in assemblies, Comput. Ind. Eng. 156, 107259 (2021) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.