Open Access
Mechanics & Industry
Volume 23, 2022
Article Number 17
Number of page(s) 8
Published online 01 August 2022
  1. W.-T. Tsai, A review of environmental hazards and adsorption recovery of cleaning solvent hydrochlorofluorocarbons (HCFCs), J. Loss Prev. Process Ind. 15, 147–157 (2002) [CrossRef] [Google Scholar]
  2. B. Haase, Wie sauber muß eine Oberfläche sein? J. für Oberflächentechnik 37, 52–57 (1997) [Google Scholar]
  3. ASM International, Choosing a Cleaning Process (ASM International, 1996) [Google Scholar]
  4. H. Lais, P.S. Lowe, T.-H. Gan, L.C. Wrobel, Numerical modelling of acoustic pressure fields to optimize the ultrasonic cleaning technique for cylinders, Ultrason. Sonochem. 45, 7–16 (2018) [CrossRef] [Google Scholar]
  5. T.J. Mason, Ultrasonic cleaning: an historical perspective, Ultrason. Sonochem. 29, 519–523 (2016) [CrossRef] [Google Scholar]
  6. W. Tangsopa, J. Thongsri, Development of an industrial ultrasonic cleaning tank based on harmonic response analysis, Ultrasonics 91, 68–76 (2019) [CrossRef] [PubMed] [Google Scholar]
  7. R. Park, M. Choi, E.H. Park, W.-J. Shon, H.-Y. Kim, W. Kim, Comparing cleaning effects of gas and vapor bubbles in ultrasonic fields, Ultrason. Sonochem. 76, 105618 (2021) [CrossRef] [Google Scholar]
  8. K.-H. Kim, G. Chahine, J.-P. Franc, A. Karimi, Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction (Springer Netherlands, 2014) [CrossRef] [Google Scholar]
  9. S. Parthasarathy, R.R. Mohammed, C.M. Fong, R.L. Gomes, S. Manickam, A novel hybrid approach of activated carbon and ultrasound cavitation for the intensification of palm oil mill effluent (POME) polishing, J. Clean. Prod. 112, 1218–1226 (2016) [CrossRef] [Google Scholar]
  10. Y. Caliskan, H. Cengiz Yatmaz, N. Bektas, Photocatalytic oxidation of high concentrated dye solutions enhanced by hydrodynamic cavitation in a pilot reactor, Process Saf. Environ. Prot. 111, 428–438 (2017) [CrossRef] [Google Scholar]
  11. P. Arbab, B. Ayati, M.R. Ansari, Reducing the use of nanotitanium dioxide by switching from single photocatalysis to combined photocatalysis-cavitation in dye elimination, Process Saf. Environ. Prot. 121, 87–93 (2019) [CrossRef] [Google Scholar]
  12. G.L. Chahine, A. Kapahi, C.-T. Hsiao, J.-K. Choi, Coupling bubble and material dynamics to model cavitation peening and pitting, J. Fluid Sci. Technol. 11, JFST0023 (2016) [CrossRef] [Google Scholar]
  13. B. Niemczewski, Observations of water cavitation intensity under practical ultrasonic cleaning conditions, Ultrason. Sonochem. 14, 13–18 (2007) [CrossRef] [Google Scholar]
  14. M. Yang, S. Xiao, C. Kang, Y. Wang, Effect of geometrical parameters on submerged cavitation jet discharged from profiled central-body nozzle, Chin. J. Mech. Eng. 26, 476–482 (2013) [CrossRef] [Google Scholar]
  15. J. Fulkerson, I. Kamenkov, Nozzle for Generating High-Energy Cavitation, European patent No. EP 1 628 785 B1 (2008) [Google Scholar]
  16. I. Kondratayev, J. Fulkerson, I. Kamenkov, V.A. Paramygin, Nozzle for Generating High-Energy Cavitation, US Patent No. 2009/0072043 A1 (2009) [Google Scholar]
  17. V.E. Johnson, Process for Drilling by a Cavitating Liquid Jet, US Patent No. US3528704A (1970) [Google Scholar]
  18. V.E. Johnson, T.R. Sundaram, A. Conn, Cavitating Liquid Jet Assisted Drill Bit and Method for Deep-Hole Drilling, US Patent No. US4391339A (1983) [Google Scholar]
  19. A. Beaucamp, T. Katsuura, K. Takata, Process mechanism in ultrasonic cavitation assisted fluid jet polishing, CIRP Ann. Manuf. Technol. 67, 361–364 (2018) [CrossRef] [Google Scholar]
  20. A. Ralys, V. Mokšin, Numerical simulation of a cavitating pulsating water jet used for removing contaminants from metal surfaces, Trans. FAMENA 43, 69–80 (2019) [Google Scholar]
  21. A. Ralys, V. Striška, V. Mokšin, Selection of the nozzle for metal surface cleaning using cavitating pulsing fluid flow, Solid State Phenom. 220–221, 957–962 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.