Open Access
Issue
Mechanics & Industry
Volume 23, 2022
Article Number 18
Number of page(s) 17
DOI https://doi.org/10.1051/meca/2022020
Published online 01 August 2022
  1. S. Aisyah Adam, N.A. Abdul Jalil, K.A.M. Razali, Y.G. Ng, The effects of posture on suspension seat transmissibility during exposure to vertical whole-body vibration, J. Phys.: Confer. Ser. 1262, 12026 (2019) [Google Scholar]
  2. V.K. Kumar, V.H. Saran, Biodynamic model of the seated human body under the vertical whole body vibration exposure, Int. J. Acoust. Vibr. 24, 657–664 (2019) [CrossRef] [Google Scholar]
  3. J.L. Coyte, D. Stirling, H. Du, M. Ros, Seated whole-body vibration analysis, technologies, and modeling: a survey, IEEE Trans. Syst. Man Cybern. Syst. 46, 725–739 (2016) [CrossRef] [Google Scholar]
  4. W. Li, H. Du, D. Ning, W. Li, Robust adaptive sliding mode PI control for active vehicle seat suspension systems, in 31st Chinese Control and Decision Conference (CCDC) , IEEE, Nanchang, China, 2019, pp. 5403–5408 [Google Scholar]
  5. D. Ning, S. Sun, H. Li, H. Du, W. Li, Active control of an innovative seat suspension system with acceleration measurement based friction estimation, J. Sound Vib. 384, 28–44 (2016) [CrossRef] [Google Scholar]
  6. Y. Zhao, M. Alashmori, F. Bi, X. Wang, Parameter identification and robust vibration control of a truck driver’s seat system using multi-objective optimization and genetic algorithm, Appl. Acoust. 173, 107697 (2021) [CrossRef] [Google Scholar]
  7. S.D. Nguyen, S. Choi, J. Kim, Smart dampers-based vibration control − Part 1: Measurement data processing, Mech. Syst. Signal Process. 145, 106958 (2020) [CrossRef] [Google Scholar]
  8. S.H. Zareh, A.A.A. Khayyat, Fuzzy inverse model of magnetorheological dampers for semi-active vibration control of an eleven-degrees of freedom suspension system, J. Syst. Des. Dyn. 5, 1485–1497 (2011) [Google Scholar]
  9. D. Yoon, G. Kim, S. Choi, Response time of magnetorheological dampers to current inputs in a semi-active suspension system: modeling, control and sensitivity analysis, Mech. Syst. Signal Process. 146, 106999 (2021) [CrossRef] [Google Scholar]
  10. S.J. Dyke, B.F. Spencer, M.K. Sain, J.D. Carlson, Modeling and control of magnetorheological dampers for seismic response reduction, Smart Mater. Struct. 5, 565–575 (1996) [CrossRef] [Google Scholar]
  11. M.A. Karkoub, M. Zribi, Active/semi-active suspension control using magnetorheological actuators, Int. J. Syst. Sci. 37, 35–44 (2006) [CrossRef] [Google Scholar]
  12. N.D. Sims, R. Stanway, D.J. Peel, A. Johnson, Controllable viscous damping: an experimental study of an electrorheological long-stroke damper under proportional feedback control, Smart Mater. Struct. 8, 601–615 (1999) [CrossRef] [Google Scholar]
  13. G. Hu, Q. Liu, G. Li, M. Xu, Simulation and analysis of adjustable Sigmoid model for a typical magnetorheological damper, Mach. Tool Hydraul. Mach. Tool Hydraul. 44, 9–15 (2016) [MathSciNet] [Google Scholar]
  14. D.H. Wang, W.H. Liao, Semiactive controllers for magnetorheological fluid dampers, J. Intel. Mater. Syst. Struc t., 16, 983–993 (2005) [CrossRef] [Google Scholar]
  15. D.H. Wang, W.H. Liao, Modeling and control of magnetorheological fluid dampers using neural networks, Smart Mater. Struct. 14, 111–126 (2005) [CrossRef] [Google Scholar]
  16. B.A. Negash, W. You, J. Lee, K. Lee, Parameter identification of Bouc-Wen model for magnetorheological (MR) fluid damper by a novel genetic algorithm, Adv. Mech. Eng. 12, 1–12 (2020) [Google Scholar]
  17. X. Dong, M. Yu, C. Liao, W. Chen, Comparative research on semi-active control strategies for magneto-rheological suspension, Nonlinear Dyn. 59, 433–453 (2010) [CrossRef] [MathSciNet] [Google Scholar]
  18. S. Gad, H. Metered, A.M. Bassiuny, A.M.A. Ghany, Ride comfort enhancement of heavy vehicles using magnetorheological seat suspension, Int. J. Heavy Vehicle Syst. 22, 93–113 (2015) [CrossRef] [Google Scholar]
  19. S. Gad, H. Metered, A. Bassuiny, A.M. Abdel Ghany, Multi-objective genetic algorithm fractional-order PID controller for semi-active magnetorheologically damped seat suspension, J. Vib. Control 23, 1248–1266 (2015) [Google Scholar]
  20. S.B. Zdenko Kovacic, Fuzzy controller design: theory and applications (CRC Press, USA, 2006) [Google Scholar]
  21. D. Singh, M.L. Aggarwal, Passenger seat vibration control of a semi-active quarter car system with hybrid fuzzy-PID approach, Int. J. Dyn. Control 5, 287–296 (2017) [CrossRef] [MathSciNet] [Google Scholar]
  22. D. Ning, S. Sun, F. Zhang, H. Du, W. Li, B. Zhang, Disturbance observer based Takagi-Sugeno fuzzy control for an active seat suspension, Mech. Syst. Signal Process. 93, 515–530 (2017) [CrossRef] [Google Scholar]
  23. C. Chao, M. Liu, C. Wang, J. Chiou, A fuzzy adaptive controller for cuckoo search algorithm in active suspension system, J. Low Frequency Noise, Vibr. Active Control 39, 761–771 (2020) [CrossRef] [MathSciNet] [Google Scholar]
  24. A. Alfadhli, J. Darling, A. Hillis, The control of an active seat suspension using an optimised fuzzy logic controller, based on preview information from a full vehicle model, Vibration 1, 20–40 (2018) [CrossRef] [Google Scholar]
  25. D.X. Phu, S. Choi, S. Choi, A new adaptive hybrid controller for vibration control of a vehicle seat suspension featuring MR damper, J. Vib. Control 23, 3392–3413 (2016) [Google Scholar]
  26. L. Tu, D. Ning, S. Sun, W. Li, H. Huang, M. Dong, H. Du, A novel negative stiffness magnetic spring design for vehicle seat suspension system, Mechatronics 68, 102370 (2020) [CrossRef] [Google Scholar]
  27. Y. Qin, F. Zhao, Z. Wang, L. Gu, M. Dong, Comprehensive analysis for influence of controllable damper time delay on semi-active suspension control strategies, J. Vib. Acoust. 139 (2017) [Google Scholar]
  28. B.F. Spencer, S.J. Dyke, M.K. Sain, J.D. Carlson, Phenomenological model of a magnetorheological damper, J. Eng. Mech. 123, 230–238 (1997) [CrossRef] [Google Scholar]
  29. J. Wu, Y. Wang, K. Burrage, Y. Tian, B. Lawson, Z. Ding, An improved firefly algorithm for global continuous optimization problems, Expert Syst. Appl. 149, 113340 (2020) [CrossRef] [Google Scholar]
  30. X. Yang, Firefly algorithms for multimodal optimization, Stoch. Algor.: Found. Appl. Proc. 5792, 169–178 (2009) [Google Scholar]
  31. X. Yang, Firefly Algorithm, Levy Flights and Global Optimization, Research and Development in Intelligent Systems XXVI: Incorporating Applications and Innovations in Intelligent Systems XVII, 209–218 (2010). [Google Scholar]
  32. Y. Chen, D. Xue, Solving applied mathematical problems with MATLAB (CRC Press, Boca Raton, 2008) [Google Scholar]
  33. K.H. Ang, G. Chong, Y. Li, PID control system analysis, design, and technology, IEEE Trans. Contr. Syst. T 13, 559–576 (2005) [CrossRef] [Google Scholar]
  34. H. Khodadadi, H. Ghadiri, Self-tuning PID controller design using fuzzy logic for half car active suspension system, Int. J. Dyn. Control 6, 224–232 (2018) [CrossRef] [MathSciNet] [Google Scholar]
  35. P. Swethamarai, P. Lakshmi, Design and implementation of fuzzy-PID controller for an active quarter car driver model to minimize driver body acceleration, 2019 IEEE International Systems Conference (SysCon), 2019. [Google Scholar]
  36. A.G.A. Muthalif, H.B. Kasemi, N.H.D. Nordin, M.M. Rashid, M.K.M. Razali, Semi-active vibration control using experimental model of magnetorheological damper with adaptive F-PID controller, Smart Struct. Syst. 20, 85–97 (2017) [Google Scholar]
  37. M. Paksoy, R. Guclu, S. Cetin, Semiactive self-tuning fuzzy logic control of full vehicle model with MR damper, Adv. Mech. Eng. 6, 816813 (2015) [Google Scholar]
  38. N.M. Ghazaly, Fuzzy and PID controlled active suspension system and passive suspension system comparison, Int. J. Adv. Sci. Technol. 28, 1721–1729 (2019) [Google Scholar]
  39. J. Li, L. Xu, K. Zhang, Tire dynamic load characteristics analysis of heavy vehicles under non-stationary running condition, J. Vibr. Shock 39, 109–114 (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.