Open Access
Issue
Mechanics & Industry
Volume 23, 2022
Article Number 23
Number of page(s) 21
DOI https://doi.org/10.1051/meca/2022017
Published online 09 August 2022
  1. B. White, R. Nilsson, U. Olofsson, A. Arnall, M. Evans, T. Armitage, J. Fisk, D. Fletcher, R. Lewis, Effect of the presence of moisture at the wheel—rail interface during dew and damp conditions, Proc. Inst. Mech. Eng. F 232, 979–989 (2018) [CrossRef] [Google Scholar]
  2. K. Ishizaka, S.R. Lewis, R. Lewis, The low adhesion problem due to leaf contamination in the wheel/rail contact: bonding and low adhesion mechanisms, Wear 378-379, 183–197 (2017) [CrossRef] [Google Scholar]
  3. M. Godet, The third-body approach: a mechanical view of wear, Wear 100, 437–452 (1984) [CrossRef] [Google Scholar]
  4. Y. Berthier, Mécanismes et tribologie. PhD thesis (1988) [Google Scholar]
  5. P.M. Cann, The “leaves on the line” problem-a study of leaf residue film formation and lubricity under laboratory test conditions, Tribol. Lett. 24, 151–158 (2006) [CrossRef] [Google Scholar]
  6. E. Konomics, Description of a plant stomata (2012) [Google Scholar]
  7. O. Bringel, Etude des caractéristiques chimiques et structurales, d’une pollution solide, formée sur les rails de voies ferrées et les roues de matériels roulants et ayant un caractère isolant (d’un point de vue électrique). PhD thesis (2021) [Google Scholar]
  8. M. Watson, B. White, J. Lanigan, T. Slatter, R. Lewis, The composition and friction-reducing properties of leaf layers: leaf layer friction and composition, Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 476 (2020) [Google Scholar]
  9. K. Ishizaka, S.R. Lewis, D. Hammond, R. Lewis, Chemistry of black leaf films synthesised using rail steels and their influence on the low friction mechanism, RSC Adv. 8, 32506–32521 (2018) [CrossRef] [Google Scholar]
  10. J.D. Hem, Complexes of ferrous iron with tannic acid, Chem. Iron Natural Water 1459, 75–94 (1960) [Google Scholar]
  11. W. Skipper, A. Chalisey, R. Lewis, A review of railway sanding system research: wheel/rail isolation, damage, and particle application, Proc. Inst. Mech. Eng. F 234, 567–583 (2020) [CrossRef] [Google Scholar]
  12. P. Merino, S. Cazottes, V. Lafilé, M. Risbet, A. Saulot, S. Bouvier, J. Marteau, Y. Berthier, How to reproduce a mechanical white etching layer (WEL) on rail surface thanks to a new experimental wheel-rail contact test bench, Wear 482-483 (2021) [Google Scholar]
  13. K. Ishizaka, B. White, M. Watson, S.R. Lewis, R. Lewis, Influence of temperature on adhesion coefficient and bonding strength of leaf films: a twin disc study, Wear 454-455, 203330 (2020) [CrossRef] [Google Scholar]
  14. K. Jie Rong, Y. Long Xiao, M. Xue Shen, H. Ping Zhao, W.J. Wang, G. Yao Xiong, Influence of ambient humidity on the adhesion and damage behavior of wheel-rail interface under hot weather condition, Wear 486-487, 204091 (2021) [CrossRef] [Google Scholar]
  15. D.T. Eadie, H. Harrison, R. Kempka, R. Lewis, A. Keylin, N. Wilson, Field assessment of friction and creepage with a new tribometer, in Proceedings of the 11th International Conference on Contact Mechanics and Wear of Rail/wheel Systems, CM 2018 (2018), pp. 208–217 [Google Scholar]
  16. Y. Zhu, Y. Lyu, U. Olofsson, Mapping the friction between railway wheels and rails focusing on environmental conditions, Wear 324-325, 122–128 (2015). [CrossRef] [Google Scholar]
  17. U. Olofsson, K. Sundvall, Influence of leaf, humidity and applied lubrication on friction in the wheel-rail contact: Pinon-disc experiments, Proc. Inst. Mech. Eng. F 218, 235–242 (2004) [CrossRef] [Google Scholar]
  18. British Steel, Rail Steel Grades - Steel Compositions and Properties (2017) [Google Scholar]
  19. P. Merino, Reproduction experimentale du contact roue-rail à échelle réduite. PhD thesis, INSA Lyon (2019) [Google Scholar]
  20. AFNOR, NF EN 13262+A2, applications ferroviaires, essieux montes et bogies, roues - prescription pour le produit (2011) [Google Scholar]
  21. S. Simon, A. Saulot, C. Dayot, X. Quost, Y. Berthier, Tribological characterization of rail squat defects, Wear 297, 926–942 (2013) [CrossRef] [Google Scholar]
  22. B. White, R. Lewis, Simulation and understanding the wetrail phenomenon using twin disc testing, Tribol. Int. 136, 475–486 (2019) [CrossRef] [Google Scholar]
  23. A. Meierhofer, C. Hardwick, R. Lewis, K. Six, P. Dietmaier, Third body layer-experimental results and a model describing its influence on the traction coefficient, Wear 314, 148–154 (2014) [CrossRef] [Google Scholar]
  24. K. Ishizaka, The Low Adhesion Problem due to Leaf Contamination in the Wheel/Rail Contact : Bonding and Low Adhesion Mechanisms. PhD thesis, The university of Sheffield (2019) [Google Scholar]
  25. E. Gallardo-Hernandez, R. Lewis, Twin disc assessment of wheel/rail adhesion, Wear 265, 1309–1316 (2008) [CrossRef] [Google Scholar]
  26. R. Lewis, U. Olofsson, Basic tribology of the wheel—rail contact, in Wheel—Rail Interface Handbook (Elsevier, 2009), pp. 34–57 [CrossRef] [Google Scholar]
  27. C.R. Fulford, Review of Low Adhesion Research. RSSB report CRF04002, 2004 [Google Scholar]
  28. C.T. Foo, B. Omar, A.S. Jalil, A review on recent wheel/rail interface friction management, J. Phys.: Conf. Ser. 1049, 012009 (2018) [CrossRef] [Google Scholar]
  29. K. Ishizaka, S.R. Lewis, D. Hammond, R. Lewis, Chemistry of black leaf films synthesised using rail steels and their influence on the low friction mechanism, RSC Adv. 8, 32506–32521 (2018) [CrossRef] [Google Scholar]
  30. Y. Zhu, U. Olofsson, H. Chen, Friction between wheel and rail: a pin-on-disc study of environmental conditions and iron oxides, Tribol. Lett. 52, 327–339 (2013) [CrossRef] [Google Scholar]
  31. C.R. Fulford, Review of Low Adhesion Research. RSSB report CRF04002 (2004) [Google Scholar]
  32. K. Ishizaka, B. White, M. Watson, S.R. Lewis, R. Lewis, Influence of temperature on adhesion coefficient and bonding strength of leaf films: a twin disc study, Wear 454-455, 203330 (2020) [CrossRef] [Google Scholar]
  33. S.R. Lewis, R. Lewis, U. Olofsson, D.T. Eadie, J. Cotter, X. Lu, Effect of humidity, temperature and railhead contamination on the performance of friction modifiers: Pin-on-disk study, Proc. Inst. Mech. Eng. F 227, 115–127 (2013) [CrossRef] [Google Scholar]
  34. D. Diringer, The Book Before Printing: Ancient, Medieval and Oriental (1982) [Google Scholar]
  35. H. Chen, T. Ban, M. Ishida, T. Nakahara, Experimental investigation of influential factors on adhesion between wheel and rail under wet conditions, Wear 265, 1504–1511 (2008) [CrossRef] [Google Scholar]
  36. S.R. Lewis, R. Lewis, J. Cotter, X. Lu, D.T. Eadie, A new method for the assessment of traction enhancers and the generation of organic layers in a twin-disc machine, Wear 366-367, 258–267 (2016) [CrossRef] [Google Scholar]
  37. E. Kontturi, T. Vuorinen, Indirect evidence of supramolec- ular changes within cellulose microfibrils of chemical pulp fibers upon drying, Cellulose 16, 65–74 (2009) [CrossRef] [Google Scholar]
  38. B. White, Using Tribo-Chemistry Analysis to Understand Low Adhesion in the Wheel-Rail Contact. PhD thesis, The University of Sheffield (April 2018) [Google Scholar]
  39. W.J. Wang, H.F. Zhang, H.Y. Wang, Q.Y. Liu, M.H. Zhu, Study on the adhesion behavior of wheel/rail under oil, water and sanding conditions, Wear 271, 2693–2698 (2011) [CrossRef] [Google Scholar]
  40. R. Lewis, E.A. Gallardo-Hernandez, T. Hilton, T. Armitage, Effect of oil and water mixtures on adhesion in the wheel/rail contact, Proc. Inst. Mech. Eng. F 223, 275–283 (2009) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.