Open Access
Issue |
Mechanics & Industry
Volume 23, 2022
|
|
---|---|---|
Article Number | 27 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/meca/2022026 | |
Published online | 18 November 2022 |
- R. Stephenson, D. Glennie, J.N. Fawcett, J.M. Hale, A method of measuring the dynamic loads in high-speed timing chains, Proc. Inst. Mech. Eng. Part D 214, 217–226 (2000), https://doi.org/10.1177/095440700021400211 [CrossRef] [Google Scholar]
- R. Tandler, N. Bohn, U. Gabbert, E. Woschke, Experimental investigations of the internal friction in automotive bush chain drive systems, Tribol. Int. 140, 105871 (2019), https://doi.org/10.1016/j.triboint.2019.105871 [CrossRef] [Google Scholar]
- R. Tandler, N. Bohn, U. Gabbert, E. Woschke, Analytical wear model and its application for the wear simulation in automotive bush chain drive systems, Wear 446–447, 203193 (2020), https://doi.org/10.1016/j.wear.2020.203193 [CrossRef] [Google Scholar]
- C.J. Lodge, S.C. Burgess, A model of the tension and transmission efficiency of a bush roller chain, Proc. Inst. Mech. Eng. Part C 216, 385–394 (2001), https://doi.org/10.1243/0954406021525179 [CrossRef] [Google Scholar]
- M.D. Kidd, N.E. Loch, R.L. Reuben, Bicycle chain efficiency (Heriot-Watt University, Scotland, 2000) [Google Scholar]
- J.B. Spicer, C.J.K. Richardson, M.J. Ehrlich et al., Effects of frictional loss on bicycle chain drive efficiency, J. Mech. Des. Trans. ASME 123, 598–605 (2001), https://doi.org/10.1115/1.1412848 [CrossRef] [Google Scholar]
- N.E. Hollingworth, D.A. Hills, Theoretical efficiency of a cranked link chain drive, Proc. Inst. Mech. Eng. Part C 200, 375–377 (1986), https://doi.org/10.1243/PIME_PROC_1986_200_141_02 [CrossRef] [Google Scholar]
- J.B. Spicer, Effects of the nonlinear elastic behavior of bicycle chain on transmission efficiency, J. Appl. Mech. Trans. ASME 80, 021005 (2013), https://doi.org/https://doi.org/10.1115/1.4007431 [CrossRef] [Google Scholar]
- S.P. Zhang, T.O. Tak, Efficiency estimation of roller chain power transmission system, Appl. Sci. 10, 1–13 (2020), https://doi.org/10.3390/app10217729 [Google Scholar]
- J.N. Fawcett, S.W. Nicol, Vibration of a roller chain drive operating at constant speed and load, Proc. Inst. Mech. Eng. 194, 97–101 (1980), https://doi.org/10.1243/PIME_PROC_1980_194_012_02 [CrossRef] [Google Scholar]
- R.C. Binder, Mechanics of the Roller Chain Drive: Based on Mathematical Studies by R. C. Binder (Prentice-Hall, 1956) [Google Scholar]
- R.A. Sack, Transverse oscillations in travelling strings, Br. J. Appl. Phys. 5, 224–226 (1954), https://doi.org/10.1088/0508-3443/5/6/307 [CrossRef] [Google Scholar]
- S. Mahalingam, Transverse vibrations of power transmission chains, Br. J. Appl. Phys. 8, 145–148 (1957), https://doi.org/10.1088/0508-3443/8/4/303 [CrossRef] [Google Scholar]
- J.N. Fawcett, S.W. Nicol, Influence of lubrication on tooth-roller impacts in chain drives, Inst. Mech. Eng. Proc. 191, 271–275 (1977), https://doi.org/10.1243/pime_proc_1977_191_033_02 [CrossRef] [Google Scholar]
- B. Kohler, E. Sztrygler, Chaînes mécaniques. Tech l'ingénieur Fonct Compos mécaniques base docum (1989) [Google Scholar]
- M.R. Naji, K.M. Marshek, Analysis of roller chain sprocket pressure angles, Mech. Mach. Theory 19, 197–203(1984), https://doi.org/10.1016/0094-114X(84)90042-9 [CrossRef] [Google Scholar]
- M.R. Naji, K.M. Marshek, The effects of the pitch difference on the load distribution of a roller chain drive, Mech. Mach. Theory 24, 351–362 (1989), https://doi.org/10.1016/0094-114X(89)90065-7 [CrossRef] [Google Scholar]
- M.S. Kim, G.E. Johnson, Mechanics of roller chain-sprocket contact: a general modelling stragegy, in American Society of Mechanical Engineers, Design Engineering Division (Publication) DE (1992), pp. 689–695 [Google Scholar]
- I. Troedsson, L. Vedmar, A method to determine the static load distribution in a chain drive, Proc. Inst. Mech. Eng. Part C 215, 569–579 (2001), https://doi.org/10.1243/0954406011520959 [CrossRef] [Google Scholar]
- S. Mahalingam, Polygonal action in chain drives, J. Franklin Inst. 265, 23–28 (1958), https://doi.org/10.1016/0016-0032(58)90665-3 [CrossRef] [Google Scholar]
- N. Fuglede, J.J. Thomsen, Kinematics of roller chain drives − exact and approximate analysis, Mech. Mach. Theory 100, 17–32 (2016), https://doi.org/10.1016/j.mechmachtheory.2016.01.009 [CrossRef] [Google Scholar]
- M.R. Naji, K.M. Marshek, Analysis of sprocket load distribution, Mech. Mach. Theory 18, 349–356 (1983), https://doi.org/10.1016/0094-114X(83)90130-1 [CrossRef] [Google Scholar]
- M.R. Naji, K.M. Marshek, Experimental determination of the roller chain load distribution, J. Mech. Des. Trans. ASME 105, 331–338 (1983), https://doi.org/10.1115/1.3267365 [CrossRef] [Google Scholar]
- N.E. Hollingworth, D.A. Hills, Forces in a heavy-duty drive chain during articulation, Proc. Inst. Mech. Eng. Part C 200, 367–374 (1986), https://doi.org/10.1243/PIME_PROC_1986_200_140_02 [CrossRef] [Google Scholar]
- R. Wragge-Morley, J. Yon, R. Lock et al. A novel pendulum test for measuring roller chain efficiency, Meas. Sci. Technol. 29 (2018). https://doi.org/10.1088/1361-6501/aaa239 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.