Open Access
Issue |
Mechanics & Industry
Volume 23, 2022
|
|
---|---|---|
Article Number | 26 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/meca/2022024 | |
Published online | 10 October 2022 |
- D.-R. Taur, H.-T. Hsu, A composite guidance strategy for SAAMM with side jet controls. In AIAA Guidance, Navigation, and Control Conference and Exhibit (2001), p. 4427 [Google Scholar]
- Y. Gao, L. Han, J. Wang, Trajectory modeling and simulation of anti-missile interception of warship based missile, in Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems. Springer (2016), pp. 500–507 [CrossRef] [Google Scholar]
- K.A. Wise, D.J. Roy, Agile missile dynamics and control, J. Guidance Control Dyn. 21, 441–449 (1998) [CrossRef] [Google Scholar]
- S. Klus, F. Nüske, S. Peitz, J.H. Niemann, C. Clementi, C. Schütte, Data-driven approximation of the Koopman generator: model reduction, system identification, and control, Physica D 406, 132416 (2020) [CrossRef] [MathSciNet] [Google Scholar]
- Y. Lu, J. Duan, Discovering transition phenomena from data of stochastic dynamical systems with Lévy noise, Chaos 30, 093110 (2020) [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- M.O. Williams, I.G. Kevrekidis, C. Rowley, A datadriven approximation of the Koopman operator: extending dynamic mode decomposition, J. Nonlinear Sci. 25, 1307–1346 (2015) [CrossRef] [MathSciNet] [Google Scholar]
- S.L. Brunton, J. Proctor, J. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci. USA 113, 201517384 (2016) [Google Scholar]
- K. Champion, B. Lusch, J.N. Kutz, S.L. Brunton, Datadriven discovery of coordinates and governing equations, Proc. Natl. Acad. Sci. USA 116, 1906995116 (2019) [Google Scholar]
- S. Lee, M. Kooshkbaghi, K. Spiliotis, C.I. Siettos, I.G. Kevrekidis, Coarse-scale PDEs from fine-scale observations via machine learning, Chaos 30, 013141 (2020) [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- S. Rudy, A. Alla, S.L. Brunton, J.N. Kutz, Data-driven identification of parametric partial differential equations, SIAM J. Appl. Dyn. Syst. 18, 643–660 (2019) [CrossRef] [MathSciNet] [Google Scholar]
- H. Schaeffer, R. Caflisch, C.D. Hauck, S. Osher, Sparse dynamics for partial differential equations, Proc. Natl. Acad. Sci. USA 110, 6634–6639 (2013) [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- L. Boninsegna, F. Nüske, C. Clementi, Sparse learning of stochastic dynamical equations, J. Chem. Phys. 148, 241723 (2018) [CrossRef] [PubMed] [Google Scholar]
- Y. Li, J. Duan, A data-driven approach for discovering stochastic dynamical systems with non-Gaussian Lévy noise, Physica D 417, 132830 (2021) [CrossRef] [Google Scholar]
- Y. Li, J. Duan, Extracting governing laws from sample path data of non-Gaussian stochastic dynamical systems, J. Stat. Phys. 186, 1–21 (2022) [CrossRef] [MathSciNet] [Google Scholar]
- R.T.Q. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, Neural ordinary differential equations, Adv. Neural Inf. Process. Syst. 31, 6571–6583 (2018) [Google Scholar]
- X. Chen, L. Yang, J. Duan, G.E. Karniadakis, Solving inverse stochastic problems from discrete particle observations using the Fokker–Planck equation and physicsinformed neural networks, SIAM J. Sci. Comput. 43, B811–B830 (2021) [CrossRef] [Google Scholar]
- Y. Lu, Y. Li, J. Duan, Extracting stochastic governing laws by non-local Kramers–Moyal formulae, Philos. Trans. Royal Soc. A 380, 20210195 (2022) [CrossRef] [PubMed] [Google Scholar]
- M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys. 378, 686–707 (2019) [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.