Open Access
Mechanics & Industry
Volume 24, 2023
Article Number 13
Number of page(s) 25
Published online 01 May 2023
  1. S. Pillot, Fusion laser sélective de lit de poudres métalliques (Selective laser melting of metallic powder beds), Technique de l'ingénieur, BM7900 (2016) [Google Scholar]
  2. A. Mauduit, S. Pillot, H. Gransac, Study of the suitability of aluminum alloys for additive manufacturing by laser powder bed fusion, UPB Sci. Bull. Ser. B 79, 219–238 (2017) [Google Scholar]
  3. A. Mauduit, S. Pillot, F. Frascati, Application study of AlSi10Mg alloy by selective laser melting: physical and mechanical properties, microstructure, heat treatments and manufacturing of aluminium metallic matrix composite (MMC), Metall. Res. Technol. 112, 605 (2015) [CrossRef] [EDP Sciences] [Google Scholar]
  4. C.E. Cross, D.L. Olson, S. Liu, Aluminium welding. Handbook of aluminium, TOTTEN and MAC KENZIE, 1, 481–532 (2003) [Google Scholar]
  5. K. Kempen, L. Thijs, J. Van Humbeeck, J.-P. Kruth, Mechanical properties of AlSi10Mg produced by selective laser melting, Phys. Proc. 39, 439–446 (2012) [CrossRef] [Google Scholar]
  6. A. Ahmed, A. Majeed, Z. Atta, J. Guozhu, Dimensional quality and distortion analysis of thin-walled alloy parts of AlSi10Mg manufactured by selective laser melting, JMMP 3, 51 (2019) [CrossRef] [Google Scholar]
  7. S. Bai, N. Perevoshchikova, Y. Sha, X. Wu, The effects of selective laser melting process parameters on relative density of the AlSi10Mg parts and suitable procedures of the Archimedes method, Appl. Sci. 9, 583 (2019) [Google Scholar]
  8. N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting, Addit. Manufactur. 1–4, 77–86 (2014) [CrossRef] [Google Scholar]
  9. K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, Process optimization and microstructural analysis for selective laser melting of AlSi10Mg, in 2011 International Solid Freeform Fabrication Symposium, University of Texas at Austin (2011) [Google Scholar]
  10. C. Galy, Etude des interactions matériau/procédé en vue d'une optimisation des conditions opératoires du procédé de fabrication additive SLM sur des alliages d'aluminium pour des applications aéronautiques (A study of material/process interactions for optimising the operating conditions of the SLM additive manufacturing process on aluminium alloys for aerospace applications). Diss. Bordeaux (2019) [Google Scholar]
  11. P. Van Cauwenbergh, A. Beckers, L. Thijs, Heat treatment optimization via thermo-physical characterization of AlSi7Mg and AlSi10Mg manufactured by Laser Powder Bed Fusion (LPBF), Euro PM2018 Congress Proceedings, European Powder Metallurgy Association (EPMA) (2018) [Google Scholar]
  12. A. Mertens, J. Delahaye, O. Dedry, Microstructure and properties of SLM AlSi10Mg: understanding the influence of the local thermal history, Proc. Manufactur. 47, 1089–1095 (2020) [CrossRef] [Google Scholar]
  13. Z. Dong, X. Zhang, W. Shi, Study of size effect on microstructure and mechanical properties of AlSi10Mg samples made by selective laser melting, Materials 11, 2463 (2018) [CrossRef] [PubMed] [Google Scholar]
  14. P. Van Cauwenbergh, Reducing hydrogen pores and blisters by novel strategies and tailored heat treatments for Laser Powder Bed Fusion of AlSi7Mg0.6, Euro PM2019-AM Properties-Al alloys 1–7 (2019) [Google Scholar]
  15. J.C. Pereira, E. Gil, L. Solaberrieta, M. San Sebastián, Y. Bilbao, P.P. Rodríguez, Comparison of AlSi7Mg0.6 alloy obtained by selective laser melting and investment casting processes: microstructure and mechanical properties in as-built/as-cast and heat-treated condition, Mater. Sci. Eng. A 778, 139124 (2020) [CrossRef] [Google Scholar]
  16. J.H. Rao, Selective laser melted Al-7Si-0.6 Mg alloy with in-situ precipitation via platform heating for residual strain removal, Mater. Des. 182, 108005 (2019) [CrossRef] [Google Scholar]
  17. A. Aversa, M. Lorusso, F. Trevisan, Effect of process and post-process conditions on the mechanical properties of an A357 alloy produced via laser powder bed fusion, Metals 7, 68 (2017) [CrossRef] [Google Scholar]
  18. J. Fiocchi, C.A. Biffi, A. Tuissi, Selective laser melting of high-strength AlSi9Cu3 alloy: processability, microstructure, and mechanical properties, Mater. Des. 191, 108581 (2020) [CrossRef] [Google Scholar]
  19. M. Fousova, D. Dvorsky, M. Vronka, D. Vojtech, P. Lejcek, The use of selective laser melting to increase the performance of AlSi9Cu3Fe alloy, Materials 11, 1918 (2018) [CrossRef] [PubMed] [Google Scholar]
  20. R. Baitimerov, P. Lykov, D. Zherebtsov, L. Radionova, A. Shultc, K. Prashanth, Influence of powder characteristics on processability of AlSi12 alloy fabricated by selective laser melting, Materials 11, 742 (2018) [CrossRef] [PubMed] [Google Scholar]
  21. J.N. Domfang Ngnekou, Y. Nadot, G. Henaff, J. Nicolai, L. Ridosz, Effect of as-built and ground surfaces on the fatigue properties of AlSi10Mg alloy produced by additive manufacturing, Metals 11, 1432 (2021) [CrossRef] [Google Scholar]
  22. J.G. Santos Macías, C. Elangeswaran, L. Zhao, J.-Y. Buffière, B. Van Hooreweder, A. Simar, Fatigue crack nucleation and growth in laser powder bed fusion AlSi10Mg under as built and post-treated conditions, Mater. Des. 210, 110084 (2021) [CrossRef] [Google Scholar]
  23. A.M. Grande, S. Cacace, A.G. Demir, G. Sala, Fracture and fatigue behaviour of AlSi7Mg0.6 produced by selective laser melting: effects of thermal-treatments, in 25th Conference of the Italian Association of Aeronautics and Astronautics (AIDAA 2019). AIDAA7 (2019), pp. 1138–1144 [Google Scholar]
  24. E. Bassoli, L. Denti, A. Comin, A. Sola, E. Tognoli, Fatigue behavior of as-built L-PBF A357.0 Parts, Metals 8, 634 (2018) [CrossRef] [Google Scholar]
  25. J.H. Rao, K. Zhang, P. Rometsch, The influence of surface roughness on the fatigue performance of selective laser melted aluminium alloy A357, in Proceedings of the 16th International Aluminium Alloys Conference (ICAA16) (2018) [Google Scholar]
  26. M. Lorusso, F. Trevisan, F. Calignano, M. Lombardi, D. Manfredi, A357 alloy by LPBF for industry applications, Materials 13, 1488 (2020) [CrossRef] [PubMed] [Google Scholar]
  27. S. Jacob, Propriétés des alliages d'aluminium de fonderie (Properties of casting aluminium alloys), Technique de l'ingénieur, M4675 [Google Scholar]
  28. E. Cerri, E. Ghio, G. Bolelli, Effect of the distance from build platform and post-heat treatment of AlSi10Mg alloy manufactured by single-and multi-laser selective laser melting, J. Mater. Eng. Perform. 30, 4981–4992 (2021) [CrossRef] [Google Scholar]
  29. M.R. Condruz, G. Matache, A. Paraschiv, T.F. Frigioescu, T. Badea, Microstructural and tensile properties anisotropy of selective laser melting manufactured IN 625, Materials 13, 4829 (2020) [CrossRef] [PubMed] [Google Scholar]
  30. I. Serrano-Munoz, A. Ulbricht, T. Fritsch, T. Mishurova, A. Kromm, M. Hofmann, R.C. Wimpory, A. Evans, G. Bruno, Scanning manufacturing parameters determining the residual stress state in LPBF IN718 small parts, Adv. Eng. Mater. 23, 2100158 (2021) [CrossRef] [Google Scholar]
  31. T. Özel, A. Altay, A. Donmez, R. Leach, Surface topography investigations on nickel alloy 625 fabricated via laser powder bed fusion, Int. J. Adv. Manuf. Technol. 94, 4451–4458 (2018) [CrossRef] [Google Scholar]
  32. A. Mauduit, H. Gransac, S. Pillot, Influence of the manufacturing parameters in selective laser melting on properties of aluminum alloy AlSi7Mg0.6 (A357), ACSM 45, 1–10 (2021) [CrossRef] [Google Scholar]
  33. G. Wang, L. Huang, Z. Liu, Z. Qin, W. He, F. Liu, C. Chen, Y. Nie, Process optimization and mechanical properties of oxide dispersion strengthened nickel-based superalloy by selective laser melting, Mater. Des. 188, 108418 (2020) [CrossRef] [Google Scholar]
  34. G. Jacob, C.U. Brown, A. Donmez, The Influence of Spreading Metal Powders with Different Particle Size Distributions on the Powder Bed Density in Laser-Based Powder Bed Fusion Processes, NIST AMS 100-17 (National Institute of Standards and Technology, 2018) [Google Scholar]
  35. A.B. Spierings, M. Schneider, R. Eggenberger, Comparison of density measurement techniques for additive manufactured metallic parts, Rapid Prototyp. J. 17, 380–386 (2011) [CrossRef] [Google Scholar]
  36. A. Mauduit, H. Gransac, P. Auguste, S. Pillot, Study of AlSi7Mg0.6 alloy by selective laser melting: mechanical properties, microstructure, heat treatment, JCME 3, 1 (2019) [CrossRef] [Google Scholar]
  37. I. Maskery, N.T. Aboulkhair, M.R. Corfield, C. Tuck, A.T. Clare, R.K. Leach, R.D. Wildman, I.A. Ashcroft, R.J.M. Hague, Quantification and characterisation ofporosity in selectively laser melted Al-Si10-Mg using X-ray computed tomography, Mater. Character. 111, 193–204 (2016) [CrossRef] [Google Scholar]
  38. W.H. Kan, Y. Nadot, M. Foley, L. Ridosz, G. Proust, J.M. Cairney, Factors that affect the properties of additively-manufactured AlSi10Mg: porosity versus microstructure, Addit. Manuactur. 29, 100805 (2019) [CrossRef] [Google Scholar]
  39. N.O. Larrosa, W. Wang, N. Read, M.H. Loretto, C. Evans, J. Carr, U. Tradowsky, M.M. Attallah, P.J. Withers, Linking microstructure and processing defects to mechanical properties of selectively laser melted AlSi10Mg alloy, Theor. Appl. Fracture Mech. 98, 123–133 (2018) [CrossRef] [Google Scholar]
  40. A. Majeed, Y.F. Zhang, J.X. Lv, T. Peng, S. Waqar, Z. Atta, Study the effect of heat treatment on the relative density of SLM built parts of AlSi10Mg alloy, in Proceedings of the 48th International Conference on Computers and Industrial Engineering, Auckland, New Zealand, 2–5 (CIE 2018) [Google Scholar]
  41. A. Majeed, M. Muzamil, J. Lv, B. Liu, F. Ahmad, Heat treatment influences densification and porosity of AlSi10Mg alloy thin-walled parts manufactured by selective laser melting technique, J. Braz. Soc. Mech. Sci. Eng. 41, 1–13 (2019) [CrossRef] [Google Scholar]
  42. L. Girelli, M. Tocci, L. Montesano, M. Gelfi, A. Pola, Optimization of heat treatment parameters for additive manufacturing and gravity casting AlSi10Mg alloy, IOP Conf. Ser.: Mater. Sci. Eng. 264, 012016 (2017) [CrossRef] [Google Scholar]
  43. K.V. Yang, P. Rometsch, T. Jarvis, J. Rao, S. Cao, C. Davies, X. Wu, Porosity formation mechanisms and fatigue response in Al-Si-Mg alloys made by selective laser melting, Mater. Sci. Eng. A 712, 166–174 (2018) [CrossRef] [Google Scholar]
  44. S. Bagherifard, N. Beretta, S. Monti, M. Riccio, M. Bandini, M. Guagliano, On the fatigue strength enhancement of additive manufactured AlSi10Mg parts by mechanical and thermal post-processing, Mater. Des. 145, 28–41 (2018) [CrossRef] [Google Scholar]
  45. C. Weingarten, D. Buchbinder, N. Pirch, W. Meiners, K. Wissenbach, R. Poprawe, Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg, J. Mater. Process. Technol. 221, 112–120 (2015) [CrossRef] [Google Scholar]
  46. A.M.A. Mohamed, F.H. Samuel, A review on the heat treatment of Al-Si-Cu/Mg Casting Alloys, Heat Treatment − Conventional and Novel Applications, F. Czerwinski ed. (InTech, 2012) [Google Scholar]
  47. B. Dubost, P. Sainfort, Durcissement par précipitation des alliages d'aluminium, Étude et propriétés des métaux (Precipitation hardening of aluminium alloys, study and properties of metals), Technique de l'ingénieur, M240 (2015) [Google Scholar]
  48. J.H. Rao, Y. Zhang, X. Fang, Y. Chen, X. Wu, C.H.J. Davies, The origins for tensile properties of selective laser melted aluminium alloy A357, Addit. Manufactur. 17, 113–122 (2017) [CrossRef] [Google Scholar]
  49. B. Chenal, J. Driver, Écrouissage d'alliages d'aluminium, Étude et propriétés des métaux (Strain hardening of aluminium alloys, study and properties of metals), Technique de l'ingénieur, M230 (2015) [Google Scholar]
  50. Metal Handbook, Fractography, ASM Int. 12 (1998) [Google Scholar]
  51. T. Sivarupan, Ductility and solidification issues in Al-Si-Cu-Mg alloys, PhD Thesis, The University of Queensland (2014) [Google Scholar]
  52. M. Tang, Inclusions, porosity, and fatigue of AlSi10Mg parts produced by selective laser melting, Dissertations, 903, Carnegie Mellon University (2017) [Google Scholar]
  53. A. Considère, Mémoire sur l'emploi du fer et de l'acier dans les constructions (A review on the use of iron and steel in construction), Ann. Ponts Chaussées 9, 574–775 ( 1885) [Google Scholar]
  54. J. Hollomon, Tensile deformation, Trans. AIME 162, 268–290 (1945) [Google Scholar]
  55. E. Voce, A practical strain-hardening function, Metallurgia 51, 219–226 (1955) [Google Scholar]
  56. M.F. Ashby, The deformation of plastically non-homogeneous materials, Philos. Mag. 21, 399–424 (1970) [CrossRef] [Google Scholar]
  57. D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, J. Bültmann, High power selective laser melting (HP SLM) of aluminum parts, Phys. Proc. 12, 271–278 (2011) [CrossRef] [Google Scholar]
  58. E. Wycisk, M. Munsch, M. Schmidt-Lehr, Ampower Insights: Additive Manufacturing − Make or Buy? (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.