Open Access
Issue
Mechanics & Industry
Volume 24, 2023
Article Number 14
Number of page(s) 18
DOI https://doi.org/10.1051/meca/2023003
Published online 03 May 2023
  1. F. Rigaud, M. Charlotte, C. Kerdreux, P. Marechal, Multiobjective optimization of rotary-wing aircrafts at the predesign stage, Mech. Ind. 15, 267–277 (2014) [CrossRef] [EDP Sciences] [Google Scholar]
  2. K. Suzuki, N. Kikuchi, A homogenization method for shape and topology optimization, Comput. Methods Appl. Mech. Eng. 93, 291–318 (1991) [CrossRef] [Google Scholar]
  3. O. Sigmund, A 99 line topology optimization code written in Matlab, Struct. Multidiscipl. Optim. 21, 120–127 (2001) [Google Scholar]
  4. M. Stolpe, K. Svanberg, An alternative interpolation scheme for minimum compliance topology optimization, Struct. Multidiscipl. Optim. 22, 116–124 (2001) [CrossRef] [Google Scholar]
  5. D. Tchierniak, Topology optimization of resonating structures using SIMP method, Int. J. Numer. Methods Eng. 54, 1605–1622 (2002) [CrossRef] [Google Scholar]
  6. A. Takezawa, M. Daifuku, Y. Nakano, K. Nakagawa, T. Yamamoto, M. Kitamuraa, Topology optimization of damping material for reducing resonance response based on complex dynamic compliance, J. Sound Vibr. 365, 230–243 (2016) [CrossRef] [Google Scholar]
  7. R.B. Haber, C.S. Jog, M.P. Bendsøe, A new approach to variable-topology shape design using a constraint on perimeter, Struct. Optim. 11, 1–12 (1996) [CrossRef] [Google Scholar]
  8. L. Shu, M.Y. Wang, Z. Fang, Z. Ma, P. Wei, Level set based structural topology optimization for minimizing frequency response, J. Sound Vibr. 330, 5820–5834 (2011) [CrossRef] [Google Scholar]
  9. J. Cao, K. Cai, P. Fei Wang, D. Yan, J. Shi, Multiple materials layout optimization in a layered structure, Mech. Ind. 17, 404 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  10. O.M. Silva, M.M. Neves, A. Lenzi, A critical analysis of using the dynamic compliance as objective function in topology optimization of one-material structures considering steady-state forced vibration problems, J. Sound Vibr. 444, 1–20 (2019) [CrossRef] [Google Scholar]
  11. S. Burri, Contributions a l’optimisation topologique de liaisons amortissantes pour des applications spatiales. These de doctorat. CNAM, HESAM Université (2020). https://tel.archives-ouvertes.fr/tel-03179845 [Google Scholar]
  12. M.P. Bendsøe, Optimal shape design as a material distribution problem, Struct. Optim. 1, 193–202 (1989) [CrossRef] [Google Scholar]
  13. N. Zhou, G.I.N. Rozvany, The COC algorithm. Part II: Topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 89, 309–336 (1991) [CrossRef] [Google Scholar]
  14. M.P. Bendsøe, O. Sigmund, Topology Optimization – Theory, Methods and Applications (Springer, Berlin, Heidelberg, 2004) [Google Scholar]
  15. A. Diaz, N. Kikuchi, Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int. J. Numer. Methods Eng. 35, 1487–1502 (1992) [CrossRef] [Google Scholar]
  16. Z.-D. Ma, N. Kikuchi, I. Hagiwara, Structural topology and shape optimization for a frequency response problem. Comput. Mech. 13, 157–174 (1993) [CrossRef] [MathSciNet] [Google Scholar]
  17. Z.-D. Ma, H.-S. Cheng, N. Kikuchi, Structural design for obtaining desired eigenfrequencies by using the shape and topology optimization method. Comput. Syst. Eng. 5, 77–89 (1994) [CrossRef] [Google Scholar]
  18. M. Bruggi, A. Talierci, Topology optimization of the fiberreinforcement retrofitting existing structures, Int. J. Solids Struct. 50, 121–136 (2013) [CrossRef] [Google Scholar]
  19. J.-P. Kruth, M.C. Leu, T. Nakagawa, Progress in additive manufacturing and rapid prototyping, CIRP Ann. 47, 525–540 (1998) [CrossRef] [Google Scholar]
  20. R.L Bagley, P. Torvik, Fractional calculus – a different approach to the analysis of viscoelastically damped structures, AIAA J. 21, 741–748 (1983) [CrossRef] [Google Scholar]
  21. A. Germant, XLV. On fractional differentials, Philos. Mag. Ser. 1 25, 540–549 (1938) [CrossRef] [Google Scholar]
  22. B. Morin, A. Legay, J.-F. Deü, Reduced order models for dynamic behavior of elastomer damping devices, Finite Elem. Anal. Des. 143, 66–75 (2018) [CrossRef] [Google Scholar]
  23. L. Rouleau, A. Legay, J.-F. Deü, Modelisation vibro-acoustique de structures sandwich munies de matériaux viscoélastiques. These de Doctorat CNAM (2013) [Google Scholar]
  24. C. Geuzaine, J.-F. Remacle, Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2019) [Google Scholar]
  25. A.C. Galucio, J.-F. Deü, R. Ohayon, Finite element formulation of viscoelastic sandwich beams using fractional derivative operators. Comput. Mech. 33, 282–291 (2004) [CrossRef] [Google Scholar]
  26. M.P. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988) [Google Scholar]
  27. O. Sigmund, Morphology-based black and white filters for topology optimization. Struct. Multidiscipl. Optim. 33, 401–424 (2007) [CrossRef] [Google Scholar]
  28. G.I.N. Rozvany, Structural Design via Optimality Criteria: The Prager Approach to Structural Optimization. (Kluwer Academic Publishers, Springer Dordrecht, 1989) [CrossRef] [Google Scholar]
  29. K. Svanberg, The method of moving asymptotes – a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987) [CrossRef] [Google Scholar]
  30. Z.-D. Ma, N. Kikuchi, I. Hagiwara, Structural topology and shape optimization for a frequency response problem, Comput. Mech. 13, 157–174 (1993) [CrossRef] [MathSciNet] [Google Scholar]
  31. G.H. Yoon, Structural topology optimization for frequency response problem using model reduction schemes, Comput. Methods Appl. Mech. Eng. 199, 1744–1763 (2010) [CrossRef] [Google Scholar]
  32. K.-S. Yun, S.-K. Youn, Topology optimization of viscoelastic damping layers for attenuating transient response of shell structures, Finite Element Anal. Des. 141, 154–165 (2018) [CrossRef] [Google Scholar]
  33. C.S. Jog, Topology design of structures subjected to periodic loading, J. Sound Vibr. 253, 687–709 (2002) [CrossRef] [Google Scholar]
  34. K. Liu, A. Tovar, An efficient 3D topology optimization code written in Matlab, Struct. Multidiscipl. Optim. 50, 1175–1196 (2014) [CrossRef] [Google Scholar]
  35. H. Heidt, J. Puig-Suari, A.S. Moore, S. Nakasuka, R.J. Twiggs, CubeSat: a new generation of picosatellite for education and industry low-cost space experimentation, in 14th Annual AIAA/USU Conference on Small Satellites (2000) [Google Scholar]
  36. R. Hevner, W. Holemans, J. Puig-Suari, R.J. Twiggs, An advanced standard for CubeSats, in 25th Annual AIAA/USU Conference on Small Satellites (2011) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.