Mechanics & Industry
Volume 24, 2023
History of matter: from its raw state to its end of life
Article Number 29
Number of page(s) 6
Published online 24 August 2023
  1. C. Lahue, A.A. Madden, R.R. Dunn, C.S. Heil, History and domestication of Saccharomyces cerevisiae in bread baking, Front. Genet. 11, 1373–1373 (2020) [CrossRef] [Google Scholar]
  2. M. Parapouli, A. Vasileiadis, A.S. Afendra, E. Hatziloukas, Saccharomyces cerevisiae and its industrial applications, AIMS Microbiol. 6, 1–31 (2020) [CrossRef] [Google Scholar]
  3. R. Hatoum, S. Labrie, I. Fliss, Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications, Front. Microbiol. 3, 421–421 (2012) [CrossRef] [Google Scholar]
  4. S. Hassan, C. Poulos, J. Bhati, S. Rangwani, Z. Khan, A. Mahmoud, T.O. Mohammed, S.R. Feldman, Saccharomyces cerevisiae as a skin physiology, pathology, and treatment model, Dermatol. Online J. 26 (2020) [CrossRef] [Google Scholar]
  5. S.A. Proctor, N. Minc, A. Boudaoud, F. Chang, Contributions of turgor pressure, the contractile ring, and septum assembly to forces in cytokinesis in fission yeast, Curr. Biol. 22, 1601–1608 (2012) [CrossRef] [Google Scholar]
  6. E. Cabib, D.H. Roh, M. Schmidt, L.B. Crotti, A. Varma, The yeast cell wall and septum as paradigms of cell growth and morphogenesis, J. Biol. Chem. 276, 19679–19682 (2001) [CrossRef] [Google Scholar]
  7. R. Basu, E.L. Munteanu, F. Chang, Role of turgor pressure in endocytosis in fission yeast, Mol. Biol. Cell 25, 679–687 (2014) [CrossRef] [PubMed] [Google Scholar]
  8. E.R. Rojas, K.C. Huang, Regulation of microbial growth by turgor pressure, Curr. Opin. Microbiol. 42, 62–70 (2018) [CrossRef] [Google Scholar]
  9. B. Goldenbogen, W. Giese, M. Hemmen, J. Uhlendorf, A. Herrmann, E. Klipp, Dynamics of cell wall elasticity pattern shapes during yeast mating Morphogenesis, Open Biol. 6, 160136–160136 (2016) [CrossRef] [Google Scholar]
  10. S.P. Banavar, C. Gomez, M. Trogdon, L.R. Petzold, T.M. Yi, O. Campas, Mechanical feedback coordinates cell wall expansion and assembly in yeast mating morphogenesis, PLoS Comput. Biol. 14, e1005940 (2018) [CrossRef] [Google Scholar]
  11. P. Wriggers, R. Eberlein, F. Gruttman, An axisymmetrical quasi-Kirchhoff shell element for large plastic deformations, Arch. Appl. Mech. 65, 465–477 (1995) [Google Scholar]
  12. W. Wagner, A finite element model for non-linear shells of revolution with finite rotations, Int. J. Numer. Methods Eng. 29, 1455–1471 (1990) [CrossRef] [Google Scholar]
  13. E. Rodriguez, A. Hoger, A. McCulloch, Stress-dependent finite growth in soft elastic tissues, J. Biomech. 27, 455–467 (1994) [CrossRef] [Google Scholar]
  14. B. Nedjar, On a continuum thermodynamics formulation and computational aspects of finite growth in soft tissues, Int. J. Numer. Methods Biomed. Eng. 27, 1850–1866 (2011) [CrossRef] [MathSciNet] [Google Scholar]
  15. J.K.E. Ortega, A.W.J. Welch, Mathematical models for expansive growth of cells with walls, Math. Model. Natural Phenomena 8, 35–61 (2013) [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  16. Z. Awada, L. Delmarre, F. Argoul, E. Harte, A. Devin, P. Argoul, B. Nedjar, Axisymmetric shell modelling of vis-coelastic yeast cells in the finite strain range, in: L. Walha (Ed.), Design and Modeling of Mechanical Systems – V. CMSM 2021. Lecture Notes in Mechanical Engineering, Springer, Cham, 2023, pp. 93–102 [Google Scholar]
  17. Z. Awada, B., Nedjar, Finite viscoelastic modeling of yeast cells with an axisymmetrical shell approach, Mech. Res. Commun. 126, 104021–104021 (2022) [Google Scholar]
  18. F.M. Klis, C.G. de Koster, S. Brul, Cell wall-related bion-umbers and bioestimates of Saccharomyces cerevisiae and Candida albicans, Eukaryotic Cell 13, 2–9 (2014) [CrossRef] [PubMed] [Google Scholar]
  19. A. Overbeck, I. Kampen, A. Kwade, Mechanical characterization of yeast cells: effects of growth conditions, Lett. Appl. Microbiol. 19, 333–338 (2015) [CrossRef] [Google Scholar]
  20. A.E. Smith, Z. Zhang, C.R. Thomas, K.E. Moxham, A.P.J. Middelberg, The mechanical properties of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A. 97, 9871–9874 (2000) [CrossRef] [PubMed] [Google Scholar]
  21. J.D. Stenson, P. Hartley, C. Wang, C.R. Thomas, Determining the mechanical properties of yeast cell walls, Biotechnol. Progr. 27, 505–512 (2011) [CrossRef] [Google Scholar]
  22. B. Nedjar, A coupled BEM-FEM method for finite strain magneto-elastic boundary-value problems, Comput. Mech. 59, 795–807 (2017) [CrossRef] [MathSciNet] [Google Scholar]
  23. P. Wriggers, Nonlinear Finite Element Methods, Springer-Verlag, Berlin, Heidelberg, 2008 [Google Scholar]
  24. B.J. Brewer, E. Chlebowicz-Sledziewska, W.L. Fangman, Cell cycle phases in unequal mother/daughter cell cycles of saccharomyces cerevisiae, Mol. Cell. Biol. 4, 2529–2531 (1984) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.