Issue
Mechanics & Industry
Volume 24, 2023
History of matter: from its raw state to its end of life
Article Number 42
Number of page(s) 13
DOI https://doi.org/10.1051/meca/2023037
Published online 06 December 2023
  1. A. Asadpoure, M. Tootkaboni, J.K. Guest, Robust topology optimization of structures with uncertainties in stiffness – application to truss structures, Comput. Struct. 89, 1131–1141 (2011) [CrossRef] [Google Scholar]
  2. M. Tootkaboni, A. Asadpoure, J.K. Guest, Topology optimization of continuum structures under uncertainty – a polynomial chaos approach,. Comput. Methods Appl. Mech. Eng. 201–204, 263–275 (2012) [CrossRef] [Google Scholar]
  3. G. Stefanou, The stochastic finite element method: Past, present and future, Comput. Methods Appl. Mech. Eng. 198, 1031–1051 (2009) [CrossRef] [Google Scholar]
  4. D. Xiu, Fast numerical methods for stochastic computations: a review, Commun. Comput. Phys. 5, 242–272 (2009) [Google Scholar]
  5. G. Fishman, Monte Carlo: Concepts, Algorithms, and Applications, Springer Science & Business Media (2013) [Google Scholar]
  6. R.E. Caflisch, Monte Carlo and quasi-Monte Carlo methods, Acta Numerica 7, 1–49 (1998) [CrossRef] [Google Scholar]
  7. R.G. Regis, C.A. Shoemaker, A stochastic radial basis function method for the global optimization of expensive functions, INFORMS J. Comput. 19, 497–509 (2007) [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Volpi, M. Diez, N.J. Gaul, H. Song, U. Iemma, K.K. Choi, E.F. Campana, F. Stern, Development and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantification, Struct. Multidiscip. Optim. 51, 347–368 (2015) [CrossRef] [Google Scholar]
  9. J.P.C. Kleijnen, Regression and Kriging metamodels with their experimental designs in simulation: a review, Eur. J. Oper. Res. 256, 1–16 (2017) [CrossRef] [Google Scholar]
  10. H. Rostami, J.Y. Dantan, L. Homri, Review of data mining applications for quality assessment in manufacturing industry: Support vector machines, Int. J. Metrol. Qual. Eng. 6 (2015) [Google Scholar]
  11. E. Denimal, J.-J. Sinou, Advanced computational technique based on kriging and polynomial chaos expansion for structural stability of mechanical systems with uncertainties, J. Eng. Math. 130, 1–19 (2021) [CrossRef] [Google Scholar]
  12. M.A. El-Beltagy, A. Al-Juhani, A mixed spectral treatment for the stochastic models with random Parameters, J. Eng. Math. 132, 1–20 (2022) [CrossRef] [Google Scholar]
  13. N. Wiener, The homogeneous chaos, Am. J. Math. 60, 897–936 (1938) [CrossRef] [Google Scholar]
  14. R. Askey, J.A. Wilson, Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials, Vol. 319. American Mathematical Soc., 1985 [Google Scholar]
  15. D. Xiu, George Em Karniadakis, Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos, Comput. Methods Appl. Mech. Eng. 191, 4927–4948 (2002) [CrossRef] [Google Scholar]
  16. E. Jacquelin, S. Adhikari, J.J. Sinou, M.I. Friswell, Polynomial chaos expansion in structural dynamics: accelerating the convergence of the first two statistical moment sequences, J. Sound Vib. 356, 144–154 (2015) [CrossRef] [Google Scholar]
  17. E. Jacquelin, O. Dessombz, J.-J. Sinou, S. Adhikari, M.I. Friswell, Steady-state response of a random dynamical system described with padé approximants and random eigenmodes. Procedia Eng. 199, 1104–1109 (2017) [CrossRef] [Google Scholar]
  18. M.T. Reagan, H.N. Najm, R.G. Ghanem, O.M. Knio, Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection, Combust. Flame 132, 545–555 (2003) [CrossRef] [Google Scholar]
  19. R.A. Todor, C. Schwab, Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients, IMA J. Numer. Anal. 27, 232–261 (2007) [CrossRef] [MathSciNet] [Google Scholar]
  20. X. Wan, G.E. Karniadakis, Long-term behavior of polynomial chaos in stochastic flow simulations, Comput. Methods Appl. Mech. Eng. 195, 5582–5596 (2006) [CrossRef] [Google Scholar]
  21. X. Wan, G.E. Karniadakis, An adaptive multi-element generalized polynomial chaos method for stochastic differential equations, J. Comput. Phys. 209, 617–642 (2005) [Google Scholar]
  22. B. Chouvion, E. Sarrouy, Development of error criteria for adaptive multi-element polynomial chaos approaches, Mech. Syst. Signal Process. 66, 201–222 (2016) [CrossRef] [Google Scholar]
  23. D.H. Mac, Z. Tang, S. Chénet, E. Creusé, Residual-based a posteriori error estimation for stochastic magnetostatic problems, J. Comput. Appl. Math. 289, 51–67 (2015) [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Blatman, B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Prob. Eng. Mech. 25, 183–197 (2010) [CrossRef] [Google Scholar]
  25. G. Blatman, B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle Regression, J. Comput. Phys. 230, 2345–2367 (2011) [CrossRef] [MathSciNet] [Google Scholar]
  26. C.V. Mai, B. Sudret, Hierarchical adaptive polynomial chaos expansions, in: UNCECOMP 2015 – 1st Int. Conf. Uncertain. Quantif. Comput. Sci. Eng., Vol. 229, May 2015, pp. 65–78, Crete, Greece, 2015 [Google Scholar]
  27. T. Duc Dao, Q. Serra, S. Berger, E. Florentin, Error estimation of polynomial chaos approximations in transient structural dynamics, Int. J. Comput. Methods 17, 2050003 (2020) [CrossRef] [MathSciNet] [Google Scholar]
  28. T. Butler, P. Constantine, T. Wildey, A posteriori error analysis of parameterized linear systems using spectral methods, SIAM J. Matrix Anal. Appl. 33, 195–209 (2012). [CrossRef] [MathSciNet] [Google Scholar]
  29. L. Mathelin, O. Le Maitre, Dual-based a posteriori error estimate for stochastic finite element Methods, Commun. Appl. Math. Comput. Sci. 2, 83–115 (2007) [CrossRef] [MathSciNet] [Google Scholar]
  30. K. Dammak, S. Koubaa, A. El Hami, L. Walha, M. Haddar, Numerical modelling of vibro-acoustic problem in presence of uncertainty: application to a vehicle cabin, Appl. Acoust. 144, 113–123 (2019) [CrossRef] [Google Scholar]
  31. M. Ghienne, C. Blanzé, L. Laurent, Stochastic model reduction for robust dynamical characterization of structures with random parameters, Comptes Rendus Méc. 345, 844–867 (2017) [Google Scholar]
  32. M. Berveiller, B. Sudret, M. Lemaire, Stochastic finite element: a non intrusive approach by regression, Eur. J. Comput. Mech. 15. 81–92 (2006) [CrossRef] [Google Scholar]
  33. G. Blatman, B. Sudret, Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach, Comptes Rendus Mec. 336, 518–523 (2008) [CrossRef] [Google Scholar]
  34. D.M. Allen, Mean square error of prediction as a criterion for selecting variables, Technometrics 13, 469–475 (1971) [CrossRef] [Google Scholar]
  35. A.M. Molinaro, R. Simon, R.M. Pfeiffer, Prediction error estimation: a comparison of resampling methods, Bioinformatics 21, 3301–3307 (2005) [CrossRef] [PubMed] [Google Scholar]
  36. M. Stone, Cross-validatory choice and assessment of statistical predictions, J. R. Stat. Soc. Ser. B 36, 111–147 (1974) [Google Scholar]
  37. B. Efron, R. Tibshirani, An Introduction to the Bootstrap, Chapman and Hall, New York, 1993 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.