Open Access
Mechanics & Industry
Volume 25, 2024
Article Number 14
Number of page(s) 19
Published online 18 April 2024
  1. J.C. Criscione, J.D. Humphrey, A.S. Douglas, W.C. Hunter, An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity, J. Mech. Phys. Solids 48, 2445–2465 (2000) [Google Scholar]
  2. International Carbon Black Association (ICAB), Carbon black user's guide, safety, health, & environmental information (2004) [Google Scholar]
  3. Y. Fan, G.D. Fowler, M. Zhao, The past, present and future of carbon black as a rubber reinforcing filler: a review, J. Clean. Prod. 247 (2020) [Google Scholar]
  4. A.M. Gessler, Effect of mechanical shear on the structure of carbon black in reinforced elastomers, Rubber Chem. Technol. 43, 943–959 (1970) [Google Scholar]
  5. M. Klüppel, The role of disorder in filler reinforcement of elastomers on various length scales, Adv. Polym. Sci. 164, (2003). DOI: 10.1007/b11054 [Google Scholar]
  6. ASTM.D.1765-99. Standard classification system for carbon blacks used in rubber products, SUPERSEDED, 1999B EDITION, May 10, 1999 [Google Scholar]
  7. N. Saintier, G. Cailletaud, R. Piques. Cyclic loadings and crystallization of natural rubber: an explanation of fatigue crack propagation reinforcement under a positive loading ratio, Mater. Sci Eng. A 528, 1078–1086 (2011) [Google Scholar]
  8. I. Masquelier, Influence de la formulation sur les propriétés en fatigue d'élastomères industriels. Thèse de Doctorat, Université de Bretagne Occidentale (2014) [Google Scholar]
  9. J. Grandcoin, A. Boukamel, S. Lejeunes, A micro-mechanically based continuum damage model for fatigue life prediction of filled rubbers, Int. J. Solids Struct. 51, 1274–1286 (2014) [Google Scholar]
  10. S.V. Hainsworth, An environmental scanning electron microscopy investigation of fatigue crack initiation and propagation in elastomers, Polym. Test. 26, 60–70 (2007) [Google Scholar]
  11. J.-L. Poisson, F. Lacroix, S. Meo, G. Berton, N. Ranganathan, Biaxial fatigue behavior of a polychloroprene rubber, Int. J. Fatigue 33, 1151–1157 (2011) [Google Scholar]
  12. J.-B. Le Cam, B. Huneau, E. Verron, L. Gornet, Mechanism of fatigue crack growth in carbon black filled natural rubber, Macromolecules 37, 5011–5017 (2004) [Google Scholar]
  13. G. Weng, H. Yao, A. Chang, K. Fu, Y. Liu, Z. Chen, Crack growth mechanism of natural rubber under fatigue loading studied by a real-time crack tip morphology monitoring method, RSC Adv. 4, 43942–43950 (2004) [Google Scholar]
  14. G. Ayoub, M. Naït-Abdelaziz, F. Zaïri, Multiaxial fatigue life predictors for rubbers: application of recent developments to a carbon-filled SBR, Int. J. Fatigue 66, 168–176 (2014) [Google Scholar]
  15. K. Legorjujago, Fatigue initiation and propagation in natural and synthetic rubbers, Int. J. Fatigue 24, 85–92 (2002) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.