Open Access
Issue |
Mechanics & Industry
Volume 25, 2024
|
|
---|---|---|
Article Number | 15 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/meca/2024011 | |
Published online | 03 May 2024 |
- W. Li, H. Du, W. Li, Four-wheel electric braking system configuration with new braking torque distribution strategy for improving energy recovery efficiency, IEEE Trans. Intell. Transp. Syst. PP, 1–17 (2019) [Google Scholar]
- M. Tanelli, G. Osorio, M. di Bernardo, S.M. Savaresi, A. Astolfi, Existence, stability and robustness analysis of limit cycles in hybrid anti-lock braking systems, Int. J. Control 82, 659–678 (2009) [CrossRef] [Google Scholar]
- L. Yuan, H. Zhao, H. Chen, B. Ren, Nonlinear MPC-based slip control for electric vehicles with vehicle safety constraints, Mechatronics 38, 1–15 (2016) [CrossRef] [Google Scholar]
- Y. Ma, J. Zhao, H. Zhao, C. Lu, H. Chen, MPC-based slip ratio control for electric vehicle considering road roughness, IEEE Access 7, 52405–52413 (2019) [CrossRef] [Google Scholar]
- M. Mirzaei, H. Mirzaeinejad, Fuzzy scheduled optimal control of integrated vehicle braking and steering systems, IEEE/ASME Trans. Mech. 22, 2369–2379 (2017) [CrossRef] [Google Scholar]
- S. Li, L. Guo, B. Zhang, X. Lu, G. Cui, J. Dou, MPC-based slip control system for in-wheel-motor drive EV, IFAC-PapersOnLine 51, 578–582 (2018) [CrossRef] [Google Scholar]
- R. d. Castro, R.E. Araújo, D. Freitas, Wheel slip control of EVs based on sliding mode technique with conditional integrators, IEEE Trans. Ind. Electr. 60, 3256–3271 (2013) [CrossRef] [Google Scholar]
- R. de Castro, R.E. Araújo, M. Tanelli, S.M. Savaresi, D. Freitas, Torque blending and wheel slip control in EVs with in-wheel motors, Vehicle Syst. Dyn. 50, 71–94 (2012) [CrossRef] [MathSciNet] [Google Scholar]
- J. Sun, X. Xue, K.W.E. Cheng, Fuzzy sliding mode wheel slip ratio control for smart vehicle anti-lock braking system, Energies 12, 2501 (2019) [CrossRef] [Google Scholar]
- S. Zhou, S. Zhang, Q. Chen, Vehicle ABS equipped with an EMB system based on the slip ratio control, Trans. FAMENA 43, SI-1 (2019) [CrossRef] [Google Scholar]
- A.M. Boopathi, A. Abudhahir, Adaptive fuzzy sliding mode controller for wheel slip control in antilock braking system, J. Eng. Res. 4, 18 (2016) [CrossRef] [Google Scholar]
- C. Jo, S. Hwang, H. Kim, Clamping-force control for electromechanical brake, IEEE Trans. Vehicular Technol. 59, 3205–3212 (2010) [CrossRef] [Google Scholar]
- C.F. Lee, C.M. Chris Line, Explicit nonlinear MPC of an automotive electromechanical brake, IFAC Proc. 41, 10758–10763 (2008) [Google Scholar]
- G. Park, S.B. Choi, Clamping force control based on dynamic model estimation for electromechanical brakes, Proc. Inst. Mech. Eng. D 232, 2000–2013 (2017) [Google Scholar]
- X. Peng, M. Jia, L. He, X. Yu, Y. Lv, Fuzzy sliding mode control based on longitudinal force estimation for electro-mechanical braking systems using BLDC motor, CES Trans. Electr. Mach. Syst. 2, 142–151 (2018) [CrossRef] [Google Scholar]
- Y. Zhao, H. Lin, B. Li, Sliding-mode clamping force control of electromechanical brake system based on enhanced reaching law, IEEE Access 9, 19506–19515 (2021) [CrossRef] [Google Scholar]
- S.-h. Eum, J. Choi, S.-S. Park, C. Yoo, K. Nam, Robust clamping force control of an electro-mechanical brake system for application to commercial city buses, Energies 10, 1–12 (2017) [Google Scholar]
- L. Li, X. Li, X. Wang, Y. Liu, J. Song, X. Ran, Transient switching control strategy from regenerative braking to anti-lock braking with a semi-brake-by-wire system, Vehicle Syst. Dyn. 54, 231–257 (2016) [CrossRef] [Google Scholar]
- H.B. Pacejka (éd.), Tyre and Vehicle Dynamics (Third Edition). Butterworth-Heinemann, Oxford (2012), pp. 593–601 [Google Scholar]
- X. Wang, L. Li, C. Yang, Hierarchical control of dry clutch for engine-start process in a parallel hybrid electric vehicle, IEEE Trans. Transp. Electrificat. 2, 231–243 (2016) [CrossRef] [Google Scholar]
- X. Chen, L. Wei, X. Wang, L. Li, Q. Wu, L. Xiao, Hierarchical cooperative control of anti-lock braking and energy regeneration for electromechanical brake-by-wire system, Mech. Syst. Signal Process. 159, 107796 (2021) [CrossRef] [Google Scholar]
- B.M. Fahrwerktechnik, Radschlupf-Regelsysteme (VogelVerlag, Wrzburg, 1993) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.