Issue
Mechanics & Industry
Volume 25, 2024
High fidelity models for control and optimization
Article Number 13
Number of page(s) 15
DOI https://doi.org/10.1051/meca/2024009
Published online 18 April 2024
  1. H.P. Rønningsen, Rheology of petroleum fluids, Annual transactions of the Nordic rheology society 20, 11–18 (2012) [Google Scholar]
  2. J.P. Valdes, M. Asuaje, N. Ratkovich, Study of an ESP’s performance handling liquid—liquid flow and unstable O—W emulsions. Part II. Coupled CFD-PBM modelling, J. Petrol. Sci. Eng. 198, 108227 (2021) [CrossRef] [Google Scholar]
  3. S. Guet, O.M.H. Rodriguez, R.V.A. Oliemans, N. Brauner, An inverse dispersed multiphase flow model for liquid production rate determination. Int. J. Multiphase Flow 32, 553–567 (2006) [CrossRef] [Google Scholar]
  4. J. Plasencia, B. Pettersen and O. Jørgen, Pipe flow of water-in-crude oil emulsions: effective viscosity, inversion point and droplet size distribution, J. Petrol. Sci. Eng. 101, 35–43 (2013) [CrossRef] [Google Scholar]
  5. R.M. Perissinotto, W. Monte Verde, C.E. Perles, J.L. Biazussi, M.S. de Castro, A.C. Bannwart, Experimental analysis on the behavior of water drops dispersed in oil within a centrifugal pump impeller, Exp. Thermal Fluid Sci. 112, 109969 (2020) [CrossRef] [Google Scholar]
  6. M.F. Khalil, S.Z. Kassab, A.S. Ismail, I.S. Elazab, Centrifugal pump performance under stable and unstable oil-water emulsions flow, Twelfth International Water Technology Conference, January 2008, pp. 687–702 [Google Scholar]
  7. D. Croce, E. Pereyra, Study of oil/water flow and emulsion formation in electrical submersible pumps, SPE Prod. Oper. 35 (2019) 26–36 [Google Scholar]
  8. H. Banjar, H.Q. Zhang, Experiments and emulsion rheology modeling in an electric submersible pump, International Petroleum Technology Conference 2019 (IPTC 2019), 2019 [Google Scholar]
  9. N.A.V. Bulgarelli, J.L. Biazussi, W. Monte Verde, C.E. Perles, M.S. de Castro, A.C. Bannwart, A novel criterion based on slip ratio to assess the flow behavior of W/O emulsions within centrifugal pumps, Chem. Eng. Sci. 247, 117050 (2022) [CrossRef] [Google Scholar]
  10. J.C. Vielma, Rheological behavior of oil-water dispersion flow in horizontal pipes, PhD thesis, Citeseer, 2006 [Google Scholar]
  11. M.F. Ali, M.H. Alqam, Role of asphaltenes, resins and other solids in the stabilization of water in oil emulsions and its effects on oil production in Saudi oil fields, Fuel 79, 1309–1316 (2000) [CrossRef] [Google Scholar]
  12. S. Kokal, Crude-oil emulsions: a state-of-the-art review, SPE Prod. Facil. 20, 5–13, (2005) [CrossRef] [Google Scholar]
  13. N. Aske, H. Kallevik, J. Sjöblom, Water-in-crude oil emulsion stability studied by critical electric field measurements. Correlation to physico-chemical parameters and near-infrared spectroscopy, J. Petrol. Sci. Eng. 36, 1–17 (2002) [CrossRef] [Google Scholar]
  14. N.A.V. Bulgarelli, J.L. Biazussi, W. Monte Verde, C.E. Perles, M.S. de Castro, A.C. Bannwart, Experimental investigation on the performance of Electrical Submersible Pump (ESP) operating with unstable water/oil emulsions, J. Petrol. Sci. Eng. 197, 107900 (2021) [CrossRef] [Google Scholar]
  15. J.P. Valdes, M. Asuaje, N. Ratkovich, Study of an ESP's performance handling liquid-liquid flow and unstable O–W emulsions. Part I. Experimental, Chem. Eng. Sci. 223 (2020) [Google Scholar]
  16. N. Aldi, C. Buratto, M. Pinelli, P.R. Spina, A. Suman, N. Casari, CFD analysis of a non-Newtonian fluids processing pump, Energy Procedia 101, 742–749 (2016). [CrossRef] [Google Scholar]
  17. M. Donmez, O. Yemenici, A numerical study on centrifugal pump performance with the influence of non-Newtonian fluids, Int. J. Sci. 8, 39–45 (2019) [Google Scholar]
  18. J.P. Valdes, D. Becerra, D. Rozo, A. Cediel, F. Torres, M. Asuaje, N. Ratkovich, Comparative analysis of an electrical submersible pump's performance handling viscous Newtonian and non-Newtonian fluids through experimental and CFD approaches, J. Petrol. Sci. Eng. 187 (2020) [Google Scholar]
  19. A.T. Ippen, The influence of viscosity on centrifugal performance, Trans ASME 68, 1–18 (1946). [Google Scholar]
  20. J.F. Guölich, Pumping highly viscous fluids with centrifugal pumps – Part 1, World Pumps 1999, 30–34 (1999). [CrossRef] [Google Scholar]
  21. W.G. Li, Effects of viscosity of fluids on centrifugal pump performance and flow pattern in the impeller, Int. J. Heat Fluid Flow 21 , 207–212 (2000) [CrossRef] [MathSciNet] [Google Scholar]
  22. Hydraulic Institute, Effects of Liquid Viscosity on Rotodynamic (Centrifugal and Vertical) Pump Performance, 2004. [Google Scholar]
  23. W.G. Li, A method for analyzing the performance of centrifugal oil pumps, J. Fluids Eng. Trans. ASME 126, 482–485 (2004) [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Amaral, V. Estevam, F.A. Franca, On the influence of viscosity on ESP performance, SPE Prod. Oper. 24, 303–310 (2009). [Google Scholar]
  25. N.A.V. Bulgarelli, J.L. Biazussi, W. Monte Verde, C.E. Perles, M.S. de Castro, A.C. Bannwart, Relative viscosity model for oil/water stable emulsion flow within electrical submersible pumps, Chem. Eng. Sci. 245, 116827 (2021) [CrossRef] [Google Scholar]
  26. J. Zhu, H. Zhu, G. Cao, H. Banjar, J. Peng, Q. Zhao, H.Q. Zhang, A new mechanistic model for oil-water emulsion rheology and boosting pressure prediction in electrical submersible pumps ESP, Proceedings – SPE Annual Technical Conference and Exhibition, January 2019, 2019 [Google Scholar]
  27. J. Zhu, H. Zhu, G. Cao, J. Zhang, J. Peng, H. Banjar, H.Q. Zhang, A new mechanistic model to predict boosting pressure of electrical submersible pumps under high-viscosity fluid flow with validations by experimental data, SPE J. 25, 744–758 (2020) [CrossRef] [Google Scholar]
  28. L. Zhou, J. Hang, L. Bai, Z. Krzemianowski, M.A. El-emam, E. Yasser, R. Agarwal, Application of entropy production theory for energy losses and other investigation in pumps and turbines: a review APEN-D-21-11938, Appl. Energy 318, 119211 (2022) [CrossRef] [Google Scholar]
  29. L. Ji, W. Li, W. Shi, H. Chang, Z. Yang, Energy characteristics of mixed-flow pump under different tip clearances based on entropy production analysis, Energy 199, 117447 (2020) [CrossRef] [Google Scholar]
  30. J. Cao, J. Pei, Y. Gu, W. Wang, S. Yuan, Flow losses analysis in a mixed flow pump with annular volute by entropy production evaluation, IOP Conf. Ser.: Earth Environ. Sci. 240 (2019) [Google Scholar]
  31. S. Shen, Z. Qian, B. Ji, Numerical analysis of mechanical energy dissipation for an axial-flow pump based on entropy generation theory, Energies 12 (2019) [Google Scholar]
  32. Y. Gu, J. Pei, S. Yuan, W. Wang, F. Zhang, P. Wang, D. Appiah, Y. Liu, Clocking effect of vaned diffuser on hydraulic performance of high-power pump by using the numerical flow loss visualization method, Energy 170, 986–997 (2019) [CrossRef] [Google Scholar]
  33. B. Yang, B. Li, H. Chen, Z. Liu, Entropy production analysis for the clocking effect between inducer and impeller in a high-speed centrifugal pump, Proc. Inst. Mech. Eng. C 233, 5302–5315 (2019) [Google Scholar]
  34. Q. Deng, J. Pei, W. Wang, B. Lin, C. Zhang, J. Zhao, Energy loss and radial force variation caused by impeller trimming in a double-suction centrifugal pump, Entropy 23 (2021) [Google Scholar]
  35. H. Chang, W. Shi, W. Li, J. Liu, Energy loss analysis of novel self-priming pump based on the entropy production theory, J. Thermal Sci. 28, 306-318 (2018) [Google Scholar]
  36. L. Ji, W. Li, W. Shi, F. Tian, R. Agarwal, Effect of blade thickness on rotating stall of mixed-flow pump using entropy generation analysis, Energy 236, 121381 (2021) [CrossRef] [Google Scholar]
  37. B. Qian, J.P. Chen, P. Wu, D.Z. Wu, P. Yan, S.Y. Li, Investigation on inner flow quality assessment of centrifugal pump based on Euler head and entropy production analysis, IOP Conf. Ser.: Earth Environ. Sci. 240 (2019) [Google Scholar]
  38. H. Hou, Y. Zhang, Z. Li, A numerical research on energy loss evaluation in a centrifugal pump system based on local entropy production method, Thermal Sci. 21, 1287–1299 (2017) [CrossRef] [Google Scholar]
  39. X. Zhao, Z. Wang, Y. Xiao, Y. Luo, Thermodynamic analysis of energy dissipation and unsteady flow characteristic in a centrifugal dredge pump under over-load conditions, Proc. Inst. Mech. Eng. C 233, 4742–4753 (2019) [Google Scholar]
  40. Y. Zhang, H. Hou, C. Xu, W. He, Z. Li, Application of entropy production method to centrifugal pump energy loss evaluation, Paiguan Jixie Gongcheng Xuebao 35 (2017) [Google Scholar]
  41. R. Gong, H. Wang, L. Chen, D. Li, H. Zhang, X. Wei, Application of entropy production theory to hydro-turbine hydraulic analysis, Sci. China Technol. Sci. 56, 1636–1643 (2013) [CrossRef] [Google Scholar]
  42. D. Li, Y. Qin, Z. Zuo, H. Wang, S. Liu, X. Wei, Numerical simulation on pump transient characteristic in a model pump turbine, J. Fluids Eng. Trans. ASME 141 (2019) [Google Scholar]
  43. D. Li, R. Gong, H. Wang, G. Xiang, X. Wei, D. Qin, Entropy production analysis for hump characteristics of a pump turbine model, Chinese J. Mech. Eng. (Engl. Ed.) 29, 803–812 (2016) [CrossRef] [Google Scholar]
  44. M.M. Ghorani, M.H. Sotoude Haghighi, A. Maleki, A. Riasi, A numerical study on mechanisms of energy dissipation in a pump as turbine (PAT) using entropy generation theory, Renewable Energy 162, 1036–1053 (2020) [CrossRef] [Google Scholar]
  45. A. Yu, Q. Tang, H. Chen, D. Zhou, Investigations of the thermo-dynamic entropy evaluation in a hydraulic turbine under various operating conditions, Renewable Energy 180, 1026–1043 (2021) [CrossRef] [Google Scholar]
  46. L. Ji, W. Li, W. Shi, F. Tian, R. Agarwal, Diagnosis of internal energy characteristics of mixed-flow pump within stall region based on entropy production analysis model, Int. Commun. Heat Mass Transfer 117, 104784 (2020) [CrossRef] [Google Scholar]
  47. A. Mwesigye, T. Bello-Ochende, J.P. Meyer, Numerical investigation of entropy generation in a parabolic trough receiver at different concentration ratios, Energy 53, 114–127 (2013) [CrossRef] [Google Scholar]
  48. L. Achour, M. Specklin, I. Belaidi, S. Kouidri, Numerical assessment of the hydrodynamic behavior of a volute centrifugal pump handling emulsion, Entropy 24 (2022) [Google Scholar]
  49. T.S. Vieira, J.R. Siqueira, A.D. Bueno, R.E.M. Morales, V. Estevam, Analytical study of pressure losses and fluid viscosity effects on pump performance during monophase flow inside an ESP stage, J. Petrol. Sci. Eng. 127, 245–258 (2015) [CrossRef] [Google Scholar]
  50. F. Lai, X. Zhu, G. Li, Numerical investigation of energy loss in a centrifugal pump through kinetic energy dissipation theory, Proc. Inst. Mech. Eng. C 234, 3745-3761 (2020) [Google Scholar]
  51. F. Zhang, D. Appiah, F. Hong, J. Zhang, S. Yuan, K.A. Adu-Poku, X. Wei, Energy loss evaluation in a side channel pump under different wrapping angles using entropy production method, Int. Commun. Heat Mass Transfer 113, 104526 (2020) [CrossRef] [Google Scholar]
  52. M.A. El-Naggar, A one-dimensional flow analysis for the prediction of centrifugal pump performance characteristics, Int. J. Rotating Mach. 2013 (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.