Open Access
Issue |
Mechanics & Industry
Volume 25, 2024
|
|
---|---|---|
Article Number | 16 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/meca/2024010 | |
Published online | 06 May 2024 |
- K. Tamboli, S. Patel, P.M. George, R. Sanghvi, Optimal design of a heavy-duty helical gear pair using particle swarm optimization technique, Proc. Technol. 14, 513–519 (2014) [CrossRef] [Google Scholar]
- M. Patil, P. Ramkumar, K. Shankar, Multi-objective optimization of the two-stage helical gearbox with tribological constraints, Mech. Mach. Theory 138,38–57 (2019) [CrossRef] [Google Scholar]
- E.S. Maputi, R. Arora, Multi-objective optimization of a 2-stage spur gearbox using NSGA-II and decision-making methods, J. Braz. Soc. Mech. Sci. Eng. 42,1–22 (2020) [CrossRef] [Google Scholar]
- T.H. Chong, I. Bae, A. Kubo, Multiobjective optimal design of cylindrical gear pairs for the reduction of gear dize and meshing vibration, JSME Int. J. Ser. C. 44, 291–298 (2001) [CrossRef] [Google Scholar]
- B.A. Abuid, Y.M. Ameen, Procedure for optimum design of a two-stage spur gear system, JSME Int. J. Ser. C. 46, 1582–1590 (2003) [CrossRef] [Google Scholar]
- K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6, 182–197 (2002) [Google Scholar]
- H.-Z. Huang, Z.-G. Tian, M.J. Zuo, Multiobjective optimization of three-stage spur gear reduction units using interactive physical programming, J. Mech. Sci. Technol. 19, 1080–1086 (2005) [CrossRef] [Google Scholar]
- C. Gologlu, M. Zeyveli, A genetic approach to automate preliminary design of gear drives, Comput. Ind. Eng. 57, 1043–1051 (2009) [CrossRef] [Google Scholar]
- F. Mendi, T. Başkal, K. Boran, F.E. Boran, optimization of module, shaft diameter and rolling bearing for spur gear through genetic algorithm, Expert Syst. Appl. 37, 8058–8064 (2010) [CrossRef] [Google Scholar]
- N. Marjanovic, B. Isailovic, V. Marjanovic, Z. Milojevic, M. Blagojevic, M. Bojic, A practical approach to the optimization of gear trains with spur gears, Mech. Mach. Theory 53, 1–16 (2012) [CrossRef] [Google Scholar]
- S. Golabi, J.J. Fesharaki, M. Yazdipoor, Gear train optimization based on minimum volume/weight design, Mech. Mach. Theory 73, 197–217 (2014) [CrossRef] [Google Scholar]
- V. Savsani, R.V. Rao, D.P. Vakharia, Optimal weight design of a gear train using particle swarm optimization and simulated annealing algorithms, Mech. Mach. Theory 45, 531–541 (2010) [CrossRef] [Google Scholar]
- A. Parmar, P. Ramkumar, K. Shankar, Macro geometry multi-objective optimization of planetary gearbox considering scuffing constraint, Mech. Mach. Theory 154, 104045 (2020) [CrossRef] [Google Scholar]
- L. Qi, J. Zhou, H. Xu, Multi-objective optimization of gearbox based on panel acoustic participation and response surface methodology, J. Low Freq. Noise Vib. Act. Control. 41, 1108–1130 (2022) [CrossRef] [Google Scholar]
- Y. Lei, L. Hou, Y. Fu, J. Hu, W. Chen, Research on vibration and noise reduction of electric bus gearbox based on multi-objective optimization, Appl. Acoust. 158, 107037 (2020) [CrossRef] [Google Scholar]
- K. Dammak, A. Baklouti, A. El Hami, Optimal reliable design of brake disk using a Kriging surrogate model, Mech. Adv. Mater. Struct. 29, 7569–7578 (2022) [CrossRef] [Google Scholar]
- S. Barakat, K. Bani-Hani, M.Q. Taha, Multi-objective reliability-based optimization of prestressed concrete beams, Struct. Saf. 26, 311–342 (2004) [CrossRef] [Google Scholar]
- Y. Zhang, X. Xu, G. Sun, X. Lai, Q. Li, Nondeterministic optimization of tapered sandwich column for crashworthiness, Thin Walled Struct. 122, 193–207 (2018) [CrossRef] [Google Scholar]
- R.H. Lopez, A.J. Torii, L.F.F. Miguel, J.E.S. De Cursi, An approach for the global reliability-based optimization of the size and shape of truss structures, Mech. Ind. 16, 603 (2015) [CrossRef] [EDP Sciences] [Google Scholar]
- O. Braydi, C. Gogu, M. Paredes, Robustness and reliability investigations on a nonlinear energy sink device concept, Mech. Ind. 21, 603 (2020) [CrossRef] [EDP Sciences] [Google Scholar]
- J. Zhou, S. Huang, Y. Qiu, Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations, Tunn. Undergr. Spac Technol. 124, 104494 (2022) [CrossRef] [Google Scholar]
- J.J. Eckert, S.F. da Silva, F.M. Santiciolli, Á.C. de Carvalho, F.G. Dedini, Multi-speed gearbox design and shifting control optimization to minimize fuel consumption, exhaust emissions and drivetrain mechanical losses, Mech. Mach. Theory 169, 104–644 (2022) [Google Scholar]
- J. Stefanović-Marinović, Ž. Vrcan, S. Troha, M. Milovančević, Optimization of two-speed planetary gearbox with brakes on single shafts, Rep. Mech. Eng. 3, 94–107 (2022) [CrossRef] [Google Scholar]
- I. Mabrouk, A. El Hami, L. Walha, B. Zghal, M. Haddar. Dynamic vibrations in wind energy systems: application to vertical axis wind turbine, Mech. Syst. Signal Process. 85, 396–414 (2017) [CrossRef] [Google Scholar]
- K. Abboudi, L. Walha, Y. Driss, M. Maatar, T. Fakhfakh, M. Haddar, Dynamic behavior of a two-stage gear train used in a fixed-speed wind turbine, Mech. Mach. Theory 46, 1888–1900 (2011) [CrossRef] [Google Scholar]
- G. Kharmanda, A. Mohamed, M. Lemaire, Efficient reliability-based design optimization using a hybrid space with application to finite element analysis, Struct. Multidiscip. Optim. 24, 233–245 (2002) [CrossRef] [Google Scholar]
- K. Dammak, A. El Hami, Thermal reliability-based design optimization using Kriging model of PCM based pin fin heat sink, Int. J. Heat Mass Transf. 166, 120745 (2021) [CrossRef] [Google Scholar]
- K. Dammak, A. Yaich, A. El Hami, L. Walha, M. Haddar, An efficient optimization based on the robust hybrid method for the coupled acoustic–structural system, Mech. Adv. Mater. Struct. 27, 1816–1826 (2020) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.